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Ferromagnetism in the Hubbard model 

W von der Linden? and D M Edwards 
Department of Mathematics, Imperial College of Science, Technology and Medicine, 
London SW7 ZBZ, UK 

Received 22 February 1991 

Abstract. The stability of the ferromagnetic state with complete spin alignment against a 
single spin reversal is studied in the square-lattice Hubbard model with nearest-neighbour 
hopping. A variational anratz is used, which is exact in one dimension and by comparison 
with accurate results for small clusters yields almost exact results in the two-dimensional 
case. The ferromagnetic region in the (WfU,  6) phase diagram is mapped out, where W is 
the bandwidth, U the on-site electron interaction and 6 is the number of holes per atom. 
This region isconsiderablysmaller thanin previousvariationalcalculationsandit isrigorously 
concluded that the stale ofcomplete spin alignment is uns.table when 6 > 0.29. for all U. and 
when W / U >  0.19,for all 6.The natureof theinstability,andofthe low-lyingexcitationsin 
the ferromagnetic state for varying 6 and W/V.  is discussed, 

1. lntroduetion 

The Hubbard model [l] is the simplest model of strongly correlated electrons in narrow 
bands. It is once again being studied intensively due to its postulated relevance to the 
high-temperature superconductors. However, little is known for certain about the phase 
diagram of the model, even at T = 0 K. One of the first applications of the model was to 
the study of itinerant electron magnetism. The HartreeFock approximation led to the 
Stoner criterion, which states that the ground state is ferromagnetic if Up@,) > 1, 
where U is the on-site interaction strength and p ( E F )  the density of states at the Fermi 
energy. It was soon clear [ I ,  21 that the introduction of correlation effects leads to 
a much more stringent condition for the ferromagnetic phase. Improved mean-field 
approximations, within the slave-boson approach (31, led to a very small ferromagnetic 
region in the phase diagram. Although the accuracy of the method is uncertain it does 
appear that very large values of Uare required to stabilie the ferromagnetic state. This 
agrees with quantum Monte Carlo results [4] for intermediate Uwhere no ferromagnetic 
phase has been found. However, in view of the small clusters and relatively high 
simulation temperature used, these results could be misleading. 

There are a few rigorous results for the Hubbard model but these are restricted to 
the one-dimensional model or, in higher dimensions, to the half-filled-band case of one 
electron per atom. For the one-dimensional case many properties are accessible via the 
exact Betheansatz [5,6J. LiebandMattis[7]baveprovedthatduetothespecialtopology 
of the one-dimensional problem the ground state for any even number of electrons is 
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always a non-magnetic singlet independent of U. For higher dimensions and half filling 
it has been shown recently [8] that for a bipartite lattice with N A  ( N B )  sites on sublattice 
A and B, respectively, the ground state is non-degenerate and has total spin S = 
iINA - NBi, which is valid as long as U > 0 independently of the dimensionality. In 
particular, for N A  = NB ( ID, square lattice and sc) the ground state is therefore a singlet. 

Away from half filling the situation is less clear. In the large4 limit, the Hubbard 
modelcan bemappedonto thet-.JmodeI(forareviewsee[9]), whichcontainsarestricted 
hopping term, allowing no doubly occupied sites, together with an antiferromagnetic 
Heisenberg Hamiltonian for the spin degrees of freedom. The pure Heisenberg model 
of the half-filled case leads to antiferromagnetism with algebraic long-range order in ID 
[IO] and long-range order in U) [ l l ,  121. The kinetic energy, however, destroys the 
antiferromagnetism rapidly with increasing hole concentration [9, 131. 

As far as the ferromagneticpart ofthe phasediagram isconcerned very little is known 
for sure. Nagaoka has shown in his pioneering work [14] that for most lattices, with 
nearest-neighbour hopping and infinite on-site interaction U, the strongly ferromagnetic 
state, with complete spin alignment, is stable for the case of one hole in an otherwise 
half-filled band [IS]. For two holes on a square lattice, again with U = m, Doucot and 
Wen found that a long-wavelength twisted spin state has lower energy than the strongly 
ferromagnetic state 1161. This is in agreement with results obtained by exact diag- 
onalization for small systems up to 8 X 8 [17-191. Fang et a1 [la] find for 2-4 holes that 
the strongly ferromagnetic state is unstable and that the energy can be lowered by 
flipping more and more spins. On this basis it is argued that the true ground state is 
presumably a singlet. In the thermodynamic limit, however, the ground state for these 
cases is degenerate with the Nagaoka state. This is reasonable as the hole concentration 
tend?. to zero as the number of sites tends to infinity. It is important to note that finite- 
size effects are crucial in the Nagaoka problem and that one can easily be deceived by 
the results for such a small number of holes, as we will discuss later on. Even the choice 
of boundary conditions changes the results in these small systems completely [19,20]. 
We will see later that closed-shell configurations (Nh  = 1, 5, 9, 13, . . . in ZD) favour 
ferromagnetism, whereasopen-shellconfigurations (Nh = 2,3,4,6,7,8, .  I .  i n z ~ )  tend 
to destabilize it.  This point has been emphasized previously by Barbieri et a1 [21]. It 
explains the discrepancy between the Nagaoka result for Nh = 1 and those for Nh = 2, 
3,4. Here Nh is the number of holes, which equals N - Ne,  where N,  is the number of 
electrons and Nis the number of sites. 

Barbieri et a/ [21] reported analytic results for Nh large, but still less than a finite 
fraction of N .  More precisely they show that for Nh =S In(N) in ZD, and Nh =S NI” in 3D, 
the strongly ferromagnetic state in the infinite-U Hubbard model is locally stable with 
respect to a single spin flip. This is a considerable extension of Nagaoka’s results 1141 
but is still restricted to a vanishing hole concentration S = Nh/Nin the thermodynamic 
limit N - m .  Thus none of the rigorous arguments addresses the question ofwhether the 
Hubbard model in two or three dimensions has a ferromagnetic phase. 

In thispaper we base anumericalanalysisofthestabilityofthe stronglyferromagnetic 
state in the ZD Hubbard model on a variational wave function proposed by Edwards 
[22] for the state with a single spin reversal. The wave function is exact for the one- 
dimensional gas with 6-function interaction as well as for the ID Hubbard model. Since 
it is of a rather general form, based on a physical idea that is not restricted to ID,  i t  is a 
very good wave function in higher dimensions as well. In section 2 we recall the most 
important previous variational approaches and discuss the physical mechanisms that 
may drive the instability of the ferromagnetic state. The variational nasarz is the subject 
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of section 3 and we derive all the expressions needed for the numerical analysis. Section 
4 contains some brief technical remarks which may be of general interest. The results 
are detailed and discussed in section 5. 

2. Variational approaches 

To consider the stability of the strongly ferromagnetic state with finite hole density in 
the thermodynamic limit, approximate methods have to be used. We will concentrate 
the discussion on rigorous variational methods for states with just one reversed spin. A 
negative spin-reversal energy definitely indicates instability of the strongly ferro- 
magnetic state. We will denote the ground state energy for a given trial wavefunction 
q(q) by E(q) .  To establish the notation we define the Hamiltonian of the Hubbard 
model: 

H =  - r 'c a;,,ai,, + U X n i L n i T  (2.1) 
M o  i 

where a:m (ai,,) creates (annihilates) a fermion of spin U = t , d at site i ,  f > 0 is the 
hopping matrix element, U represents the on-site Coulomb interaction, and (i, j )  indi- 
cates that only nearest-neighbour hopping is allowed. In the strongly ferromagnetic 
(Nagaoka) state, for which all electron spins are parallel, the particles do not experience 
the on-site repulsion U. The electrons in thisstate therefore occupy single-particleBloch 
states a: with corresponding single-particle energies 

~ ( k )  = - t x e * . A  (2.2) 
A 

where summation is over nearest-neighbour vectors A. Throughout this paper we set 
the lattice constant equal to one. The Nagaoka state is 

(2.3) 

where K is the set of wave vectors with lowest single-particle energies ~ ( k )  and 10) is the 
vacuum state. The ground state energy of the Nagaoka state is 

Eo = &(k). (2.4) 
k E K  

The wave vectors k may be divided into shells, all wave vectors within a given shell 
having the same value of ~ ( k ) .  The non-interacting ground state (Nagaoka state) IQ is 
unique only for, what we will call, closed-shell configurations. For an electron number 
corresponding to an open-shell configuration the non-interacting ground state is 
degenerate and several Nagaoka states are possible. 

There are two possible mechanisms driving the instability of the ferromagnetic state, 
which we will discuss separately: single-particle excitations and spin waves. We will 
discuss these cases in some detail to clarify the underlying physical ideas and to establish 
notation, which we will need in the discussion of our results. 

2.1. Singleparticle excitations 

To create a single-particle excitation with momentum q, an t -spin electron is removed 
from the occupied states with momentum k and is placed with reversed spin into a I - 
spin quasi-particle state with momentum k + q.  In the HartreeFock approximation the 
corresponding wave function reads: 

leading to an excitation energy wk(q)  = ~ ( k  + q) - ~ ( k )  + Up, where p = N,/N is the 
IY'HF"(4)) = atk+,)i akt IQ (2.5) 
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Figure 1. Schematic spin-dependenl momentum distribution functions predicted by the 
Gumiller ansari yrG* for k = kF and k + q = 0. The upper distribution is for the T -spin 
electrons and the lower one for the (. -spin electron. 

density of electrons. The lowest excitation energy is obviously achieved if the T -spin 
electron is removed from the Fermi surface k = k, and the 1 -spin electron is placed at 
the bottom of the band k + q = 0. Thus the momentum change qcorresponds to a wave 
vector on the Fermi surface. More precisely, the total momentum is actually q + K. The 
momentumKof the Nagaoka state can, however, be considered as the origin in k-space. 
We measure henceforth all wave vectors relative to the respective Nagaoka state, if not 
stated otherwise. For closed shells K is (z, n) for S < 1/2 and (0,O) for 6 > 1/2. The 
sole influence of the interaction in the Hartree-Fock approximation is a rigld upward 
shift of the .1 -spin electron energy by pU, which is incorrect for two reasons. It certainly 
overestimates the cost in energy to create a .1 -spin quasi-particle and it misses the band 
narrowing arising from the strongly restricted mobility of the .1 -spin electron. For large 
U (2.5) is certainly not an appropriate wave function. Real-space configurations with 
many doubly occupied sites have too large a weight in this mean-field wave function. 
This weight is reduced in the Gutzwiller wave function [23,24]: 

I Y G A ) = n ( l -  ' I n , , f l , , ) I P A ) .  (2.6) 

is a variational parameter monotonically increasing from 0 to 1 with increasing U. 
Within the framework of the Gutzwiller wave function one can study nicely how the J -  
spin electron spreads out in k-space with increasing U. The spin-dependent momentum 
distribution n,(p) = (Y~np,o~Y)/(Y~Y) is 

(2.7) 

6 ( p , k +  q)(l - qp).? + ~ ( p  'I2 -KC 1 no(k' + k + q - p ) n O ( k ' )  
k' 

(1 -2vp+v2p)  n 1 @ ) =  

Here no(p) is the momentum distribution of the T -spin electrons in the state uk , IK) and 
is 1 ifp E {K/k}  and 0 otherwise. 6(k ,  k') is the Kronecker delta symbol and the T -spin 
electron density p = N+/N. The momentum distribution is schematically depicted in 
figure 1. The number of T -spin electrons scattered out of the occupied states (shaded 
area in upper panel of figure 1) increases from 0 to p as U increases from 0 to m. At the 
same time the weight of the delta function at the bottom of the .1 -spin band declines 
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gradually from 1 to 6 and the momentum distribution of the 1 -spin electron gains more 
and more weight outside the Fermi surface of the T -spin electrons. The expectation 
value of the energy for U = m and one reversed spin has been studied recently by Shastry 
et al [25]. The excitation spectrum consists of a continuum of scattering states with 
minimum at total momentum q = k,: 

w r ( d  = (IEo//N6 - E(k)) + E(k + q)W1 - /Eo/NSzlZ). (2.8) 

z is the number of nearest-neighbour sites. The first term is the kinetic energy of the T - 
spin electrons and the second that of the J -spin electron, which correctly includes a 
band-narrowing factor. It was found in [25] that the excitation energy is positive up to a 
critical hole concentration S,, = 0.49 for the square lattice and S,, = 0.32 for sc. The 
instability of the ferromagnetic state for S > S,, is driven by single-particle excitations 
at q = kF. 

Roth [26] first discussed this instability in detail within an approximation scheme 
equivalent to one used earlier by Edwards [27,28] for discussing spin waves (see also 
[29]). It has beenshown [30,31] that Roth’smethod isequivalent toavariationalansatz 
with a wave function superior to the Gutzwiller ansatz, as it has more variational 
flexibility. The trial wave function implicitly used by Roth reads 

IyR(q)) = (a)q+kF)L + k B(k)a:t S ; + k F - k )  a k ~ t  IK) (2.9) 

where S; is the approximate magnon creation operator: 

S; = C e + ~ i a f L a , ,  = C a [ k + q ) l a , ,  
i k 

(2.10) 

where x, is the position vector of site j .  In the limit U = x, equation (2.9) simplifies to 

I y ~ ( q ) } = ~ B B ( k ) S ; + r f - k a : T a * f t  la (2.11) 
X 

which has no double occupancies because according to (2.10) the 1 -spin electron is only 
created at empty sites. This reduces to the Gutzwiller amafz used [25] if B(k)  is taken as 
aconstant independent ofk .  The ansafz (2.11) leads to lowerenergies than the Gutzwiller 
ansafz and also to a critical hole concentration about 20% smaller, namely 6, = 0.41 
[32] for the square lattice and 6,, = 0.24 for the sc [26], respectively. 

On minimizing the ground state energy with respect to B(k) a self-consistency 
equation for the excitation energies o(q) = E(q) - Eo is obtained [26]. Roth’s wave 
function is a good approximation for the single-particle excitations and is therefore well 
suited tostudy the finite-sizeeffectspresent in theNagaoka problem. This wave function 
has the advantage that the ground state energy is easily accessible by numerical tech- 
niques, even for very large systems. The lowest excitation energy, which again appears 
at theFermi wave vector, is depicted in figure2. It shows typical finite-sizeeffects, which 
we will encounter later in the numerical evaluation of the wave function proposed by 
Edwards [22]. The maxima belong to closed-shell situations, as we have mentioned 
earlier. Qualitatively, a closed-shell situation corresponds to a much too low density of 
states at kF due to the presence of the finite-size gap, whereas the opposite is true for the 
open shells. The picture is qualitatively the same for the Gutzwiller ansatz [19]. Finite- 
size effects are more severe in the accurate calculations of section 5 as the energies are 
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Figure 2. Minimum excitation energy w(q = k,) obtained from Roth's wave function for 
cluster sizes 8 X 8 (full curve plus crosser). 16 X 16 (full curve) and 1M) X 100 (thick full 
curve) for all possible numbers of holes. 

somewhat lower and the shell effects depicted in figure 2 lead to sign changes. Closed- 
shell configurations up to a critical concentration all have a positive excitation energy 
whereas most of the open-shell configuration would indicate an instability of the ferro- 
magnetic state. This is the origin of the discrepancy between the Nagaoka result for one 
hole and the results obtained for 2-4 holes. Finite-size scaling for the open-shell results 
is, however, complicated due to the degeneracy of the Nagaoka states. The situation is 
much more transparent for the closed shells and in section 5 we focus our discussion 
mostly on closed shells. 

2.2. Spin waves 

We have just seen that single-particle excitations make the ferromagnetic state unstable 
above a critical bole concentration. In addition, there is also the possibility that the 
Goldstone modes (spin waves), which tend to restore the broken rotational symmetry 
anyway, may become soft and lead eventually to an instability of the ferromagnetic 
state. The critical hole concentration could thus be reduced to a lower value or even to 
zero. The simplest spin wave conceivable is given by 

I Y S S W ( q N  = s; IQ (2.12) 

with the approximate magnon operator (2.10). For q = 0 this wave function is an 
exact eigenstate of the Hubbard Hamiltonian with maximum total spin. It is therefore 
degenerate with the Nagaoka state. For U = m, Yssw(q) is equivalent to the random- 
phase approximation [33]. The excitation spectrumof the simple spin waveamah (2.12) 
is given by: 

(2.13) 

and is shown in figure 3. For small q the energy can be expanded and yields in leading 
order 

4 q )  = Dq2 (2.14) 

which defines the spin wave stiffness constant D. In the present approximation 
DssW = IEoi/4Np and for small hole concentration Dssw = 61tl. 

1 
ossW(q) = -E (&(k  + q)  - e(k))n0(k) 

1 
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Figure 3. Excitation energies 01 the simple spin wave ansari ( X )  multiplied by 0.347, 
compared with Ihe low-lying excitations in the Hubbard model (A) as discussed in the text. 
The results are for the 12 X 12 cluster with 21 holes (6 = 0.15). The inset shows the high- 
symmetry lines and the Fermi points along these lines. 

The momentum distribution of the simple spin wave state can easily be derived from 

n T (k) = (1 - 1/Ne)n0(k)  n ( k )  = ( l / N e ) n 0 ( k  - 4). (2.15) 
The difference between the single-particle excitationsand thespin wavesis most obvious 
for the .1 -spin electrons. In the former case the electron was predominantly in one k- 
state, whereas in the latter the -spin electron is homogeneously distributed over the 
Fermi volume of the Nagaoka state shifted by q,  We will use these features in the later 
discussion to classify qualitatively the low-lying excitations, 

A wave function that contains both spin waves and single-particle excitations has 
recently been studied by Shastry er a1 [25]. They used the Gutzwiller-projected RPA wave 
function: 

(2.16) 

(2.12) and yields 

Iw=Yd) = n (1 - wit n i L ) I v ' R P A ( 4 ) )  
i 

with 

(2.17) 

In [25] the limit U = (U = 1) is studied and it is found that the bottom of the Stoner 
continuum at kF pushes the spin wave branch down and both become negative at kF. The 
critical concentration is about the same as was obtained with the Gutzwiller ansafz 
Y Y l ) .  

3.  The ansae 

In this section we present an ansatz due to Edwards 1221 which is exact in one dimension. 
As we will see, the underlying physical idea is fairly general and not restricted to one 
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dimension. To begin with we consider the k-space representation for the most general 
form of exact wave function with one reversed spin: 

W uon der Linden and D M Edwards 

h(4)) X C ( Q ) ~ & Q , L  IQ). (3.1) 
Q 

In (3.1) the summation is over all possible NT -tupels Q of wave vectors k for the T -spin 
electrons: 

The aman proposed in [22] is equivalent to replacing the unknown function C(Q) by a 
determinant of one-particle orbitals q J k ) .  o( = 1, . . . , N T  . The number of variational 
parameters is therefore drastically reduced from (iC) to merely N ( N ,  - 1). The under- 
lying physical idea that led to this amatz becomes immediately clear in the real-space 
representation of Ix(9)): 

(3.2) 

q?&J are the Fourier transforms of the linearly independent one-particle orbitals q , (k )  
of the k-space represcntation. If the $ -spin electron were to be fixed, say at position x,, 
the exact many-body wave function for the t -spin electrons would be a single Slater 
determinant of one-particle orbitals centred at x,. This is because the t -spin electrons 
interact only with the 1 -spin electron, which in turn serves as a static potential at site 
x,. If the motion of the -spin electron is taken into account, the wave function has to 
be a coherent wave of such states for all possible 1 -spin positions. This leads to the 
amatz (3.2). This wave function is a special case of the one used by Wigner and Seitz 
[34] in their work on electron correlations in jellium. Richmond and Rickayzen [35] 
have elaborated upon the simplified version with the .1 -spin electron fixed at one 
site. This ansafz has the advantage that most quantities of interest can be computed 
analytically by means of scattering theory; however, it  is not adequate for an analysis of 
the stability of the ferromagnetic state. It predicts, for example that for U =  m the 
stronglyferromagneticstate is always thegroundstate forarbitrary hole densities, which 
is in contradiction to the exact results for low electron densities [2] and to the results 
discussed in section 2. 

The motion of the 1 -spin electron leads to a very interesting momentum-dependent 
interaction for the t -spin electrons 1221, or else, after a canonical transformation, to 
long-range many-particle interaction. It has been shown in [22] that the wave function 
(3.2) is exact in one dimension. For the gascase, the one-particle orbitals qm(x,)  can be 
explicitly constructed following the ideas of McGuire [36], which started the dev- 
elopment leadingto the Bethe ansatz. In contrast to the assumptions leading to the exact 
solution in the one-dimensional problem. the physical ideas underlying the amatz (3.2) 
are not especially geared to ID, and it is not easy to see why it should not be a very good 
wave function, if not even exact, in higher dimensions. As a matter of fact, x(q)  in (3.2) 
isveryflexible. It covers, forinstance, aU thevariational wave functions that wediscussed 
in the previous sections. To recover the RPA wave function YRPA(9) of (2.17) the one- 
particle orbitals entering (3.2) take on the form 

Ne-] 

(3.3) 

The Hartree-Fock wave function IYHFA(4)) and the simple spin wave ansatz(Yssw(q)) 
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aremerelyspecialcasesofYyRPA(q) with C(k)  = 6k,ko for the former C(k) = constant for 
the latter, respectively. The treatment of the HartreeFock wavefunction is somewhat 
tricky in (3.3) but it is immediately evident when using the k-space representation 
(equation (3.1)) with C(K) being the Slater determinant of occupied t -spin orbitals 
with q , ( k )  = 6x,x,. {ke} is the set of wave vectors occupied by the 1' -spin electrons in 
(2.5). The Gutzwiller projection operator is easily incorporated. Operating with 

on the wave function (3.2) yields 

The factor (1 - 'Init) leads to modified one-particle orbitals @,(x,) in (3.2): 

@ . ( X I )  = P?&O(l - 'I61.0). (3.5) 

Consequently for U+ m ( q  - 1) the value for the central site, which is a measure for the 
number of double occupancies, tends to zero: @JO) - 0. For small hole concentrationsit 
is more convenient to perform a particle-hole transformation for the T spin electrons: 
a:, + h , ,  , a , ,  -+ h:, , leading to: 

The new vacuum state (0) is the state where every site isoccupied by an t -spin electron. 
The number of variational parameters is N ( N ,  - l), which is more economical for 
6 < 0.5. In the hole case for U = m apossible choice of one-particle orbitals, explicitly 
avoiding double occupancies, is to localize one hole, say 01 = 1, at the centre: 
g l ( x i )  = and to use g,(O) = 0 for the other orbitals. This reduces the number of 
variational parameters even more and stabilizes the numerical methods used to deter- 
mine the variational parameters. 

Forthe formulae that wewillderivenow, westick to theelectroncase. Theanalogous 
expressions for the hole case are easily obtained by the particle-hole transformation. 
We derive the expectation value for the energy for linearly independent but not necess- 
arily orthogonal one-particle orbitals. The derivation for the kinetic energy is outlined 
in the appendix. The evaluation of the interaction energy is straightforward and needs 
no special consideration in the appendiw. The three contributions to the energy are 

E = E &  + E$, + Eint = f det(S-'S(")) 
h 

+ tI:tr(S-'S(A)) + C I ~ , S & ~ ; ( O ) ~ ~ ( O )  (3.7) 

s g  = E q:(xi)q&i +x). 

A 4 

with the two-centre overlap matrices given by 

(3.8) 
i 

The overlap matrix S is a special case of (3.8) withx = 0. 
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As mentioned earlier, it is expected that the hopping of the & -spin electron is 
reduced. To discuss this point we assume orthonormal orbitals in (3.7). The band 
narrowing is qualitatively obtained by averaging det(SdA') in (3.7): 

1 
Eiin(q) = (' -2 A det(SA')) E ( q ) .  (3.9) 

The band narrowing is therefore given by the first factor in (3.9), which is the average 
overlapof the many-body wave function for the -spin electrons with this wave function 
shifted by one lattice constant. This is similar to what Doucot and Rammal[37] derived 
in the coherent-spin-state approximation and it is also akin to the hopping of polarons. 

As in the Hartree-Fock approximation. the energy is invariant under any arbitrary 
regular transformation of the occupied orbitals 

Thisfeatureisveryuseful forstahilizingthe numerical algorithm toobtain thestationary 
one-particle orbitals. To obtain an effective Hamiltonian for the -spin electron 
orbitals, we differentiate the energy with respect to p,,(x;) and equate the result to zero. 
We need not introduce Lagrangian parameters for the orthonormality constraint as in 
[U], since (3.7) is valid for arbitrary orbitals. The derivation isoutlined in section 2 of 
the appendix and leads to the eigenvalue equation: 

E,p , , (x , )  = rx e-'q.A det(SA)) q Y ( x ,  + A)S\$'-' 
h Y 

We have thus derived a self-consistent-field equation for the one-particle orbitals. As 
described in section .42, a Ldwdin orthogonalization was performed after differenti- 
ation.andsoorbitalsfinal1yappearingin (3.10)areorthogonal. Theoverlapmatriccsare 
also understood to be evaluated in these orthonormal orbitals. If the true eigenvectors 
of(3.10) areinserted, theeffectiveHamiltonian becomesHermitianand theeigenvalues 
for the occupied orbitals are all degenerate and identical to the kinetic energy of the J - 
spin electron: 

E,, = EA" = re e-i9'A det(SA)). 
A 

(3.11) 

This can be verified by multiplying (3.10) by ( x , )  and summing over x,. As a matter 
of fact, for any set of orthonormal orbitals used in the definition of the effective Ham- 
iltonian, these veryorbitals are the left-eigenvectorsof the effective Hamiltonian. The 
one-particle energies are all degenerate and given by expression (3.11). The first term 
on t h e ~ ~ s o f  (3.ll)actsonlyon theoccupiedorbitalsandistheonlyterm thatcorrelates 
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the orbitals of the t -spin electrons. The second and third terms describe a nearest- 
neighbour hopping followed by a projection into the subspace orthogonal to the occupied 
orbitals: 

H2.3  = ( - (3.12) 

Similarly, the fourth and fifth terms consist of a static scattering potential for the central 
site, again followed by the projection operator into the space of non-occupied states. 
The eigenvectors of the eigenvalue problem (3.10) without the first term would be the 
eigenstates of a tight-binding model with nearest-neighbour hopping and an impurity at 
x, = 0. 

A quantity that allows us to classify the low-lying states according to the single- 
particle or spin wave character is the momentum distribution. The expectation value of 
the spin-dependent momentum distribution function for the wave function x(q) of (3.2) 
with orthonormal orbitals q m  is derived in section A3 of the appendix: 

The expression for the t -spin electrons is what one expects for uncorrelated electrons. 
The momentum distribution for the -spin electron involves the two-centre overlap 
matrices (3.8) for all possible centres and it depends explicitly on the total momentum 
q of the many-body wave function. 

4. Some technical details 

Here we briefly discuss some of the technical details, in as far as they are of general 
interest or necessary for the understanding of the results. We used several techniques 
to determine the one-particle orbitals qw(x, ) .  The most obvious scheme for minimizing 
the energy functional is presumably simulated annealing [38]. There are at first glance 
several advantages: (i) if one has enough patience and computer time this algorithm will 
find the global minimum; (ii) the algorithm is numerically stable; (iii) when changing 
only one orbital at a time, the update technique for determinants [39] can be used. To 
perform one lattice sweep (to change each variational parameter once) involves 
O(NNa)  operations. In the actual calculation it turned out that this scheme is still very 
slow, mainly for two reasons: (a) the number of operations for one step is considerable 
and the updated determinants become inaccurate very quickly and have to be recal- 
culated from scratch at about every 100th step; (b) due to the random nature of the 
changes it was necessary to make a huge number of lattice sweeps to reach the desired 
accuracy. The problem is that the total energy is of order N while the excitation energy 
isonly O(1). 

By making use of the gradient, implicitly given in (3.10), it is actually possible to 
devise an algorithm that is superior in both respects. One can obtain a much faster 
convergence as far as the number of lattice sweeps is concemed and the computational 
costs per lattice sweep are reduced to O ( N N ; ) .  The optimal algorithm among the 
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possible standard minimization schemes for the present problem is the power method 
[40]. Formally, (3.10) can be written as 

W von der Linden and D M Edwards 

gv* = E & ,  (4.1) 
wheretheoperatorgisnon-localanddependson alloccupiedorbitals. Asforastandard 
eigenvalue problem we define the iteration scheme 

(% - ( 4 4  qp"," = 

with aproper spectralshift E,toensureandspeedup theconvergence towards the ground 
state. Starting from an arbitrary set oforthonormalorbitals the iteration procedure (4.2) 
produces a new set of orbitals, which in general is no longer orthonormal. We can 
orthonormalize the orbitals at each step. since the energy is invariant under this opera- 
tion. Extensive numerical tests have shown that the power method yields precisely the 
same ground state energies and orbitals as obtained by simulated annealing. It is worth 
mentioning that the power method and steepest descent produce a very similar sequence 
of energies, when starting from the same initial set of orbitals. The former is, however, 
more economical per iteration step. Another standard technique, which in principle 
should be superior to steepest descent, is the conjugate gradient method [41]. It turned 
out, however, that this scheme has one crucial shortcoming, which in the end makes it 
less efficient than the power method. Similarly to what happens in quantum Monte 
Carlo algorithms for many-fermion problems, the one-particle orbitals entering the 
determinant have the tendency to become more and more parallel during the iterations. 
To keep the algorithm stable one has to reorthonormalize the orbitals after about five 
iteration steps. Although theenergyisinvariant underthistransformation, the conjugate 
gradients are not, and the whole scheme loses its advantage. The Lanczos algorithm, 
which for standard eigenvalue problems is equivalent to the conjugate gradient method, 
cannot be applied to the non-linear eigenvalue problems (3.10). Most of the results 
reported in this paper are obtained with the power method. Simulated annealing is 
merely used from time to time as a check. 

5. Results and discussion 

In the first part of this chapter we concentrate on U = -. We begin the discussion of the 
results with a comparison of the ground state energies obtained with the present ansatz 
and by the Lanczos method [19], which is supposed to be exact. The biggest system 
accessible to exact diagonalization is the 8 X 8 cluster with three holes. This is an open- 
shell case and there exists no unique Nagaoka state. The wave vectors reported here are 
therefore absolute and not measured relative to a reference state. The ground state 
energies for this system for wave vectors along the (1, 1) direction are given in table 1. 
We see that thc data, obtained by the present ansatz, are in very good agreement with 
the results of the Lanczos method. The excitation energies, also given in table 1, are 
negative for periodic boundary conditions, which we used for all our calculations. 
Barbieri et al[19] found that the sign of the excitation energies depends on the boundary 
conditions. As mentioned earlier, the case of three holes is an open-shell situation and 
several Nagaoka states with different total momenta K are possible. This is why the 
excitationenergiesforq = (n, n) andq = (3~/4,3~/4)aredegenerate inourcalculation. 
They both belong to zero-energy spin wave excitations. In the following discussion we 
will concentrate on closed-shell situations, since they have two major advantages: (a) 
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Table]. Groundstateenergiesforthe8 X Eclusterwiththreeholes. Wavevenonaregiven 
in units of n/4 and energies in units of [ t i .  The exact (Lanczos) results are from [19]. The 
values in brackets are the excitation energies. 

9 Lanczos Ansalr 

(0,O) -10.942 -10,940 (-0.056) 
(1.1) -10.919 -10.916 (-0.044) 
(2.2) -10.875 -10.874 (-0.023) 

(4.4) -10.750 - 10.744 ( 0.000) 
(3.3) -10.834 -10.828 (-0.000) 

they are unique and have a fairly regular finite-size behaviour; (b) it is possible to follow 
the dispersion relation of a single branch of excitation energies, because there is only 
one Nagaoka state defining the origin in k-space. In figure 3 the low-lying dispersion for 
a system of size 12 x 12 with 21 holes is given. This dispersion is typical for the case of 
low hole concentration. We find qualitatively similar results for hole densities 6 0.15 
for all systems studied. For small 6 the dispersion curves are very much like that for the 
simple spin wave, which for comparison is also given in figure 3. They both start off =q2 
from the rpoint. The results are shown along high-symmetry linesconnecting the points 
r = (0, 0), M = (x, n) and X = (z, 0). The similarity between the simple spin wave and 
the low-lying excitation of the Hubbard model is the greater the lower the hole con- 
centration. The only important difference between the tWo results is an overall renor- 
malization factor, The simple RPA spin wave results for the case in figure 3 are about 
three times larger than OUT more accurate results. We conclude that the low-lying 
excitations of the Hubbard model for small 6 and U = mare renormalied spin waves. 
To obtain a more quantitative measure for the renormalization we analyse the spin wave 
stiffness constant (2.13). We obtain D = E(q)/qZ from a quadratic fit of the excitation 
energies for the smallest q-values in the (1,O) and (1,l) directions for a given lattice 
size. We collected data for 8 x 8,12 x 12, 16 X 16 and 20 i( 20 clusters for all possible 
numbers of holes corresponding to closed-shell situations. We find a universal linear- 
&dependence of D for 6 6 0.15: D = 0.069(5)6zlt]. In particular, for 6 = 0.1, D = 
0.0069(5)r/tl as compared with D = 0.009zltj obtained by Shastry er al with the Gutz- 
willer-projected RPA wave function. Our result is smaller as a consequence of the better 
trial wave function. The discrepancy becomes more pronounced for 6 = 0.2, where the 
results are 0.0082(7)z/tl and 0.014zltl, respectively. The spin wave stiffness constant of 
the Hubbard model is therefore much smaller than the RPA value, which for small 6 is 
DRPA = 0.256zltl. 

D as a function of 6 is already deviating from linear behaviour at 6 = 0.15, and it 
passes through a maximum with increasing 6. Eventually it becomes negative beyond 
some concentration 6*. For lower hole concentration than this, the overall dispersion 
curve already deviates qualitatively from the simple spin wave curve. It has regions of 
negative excitation energies indicating instability of the strongly ferromagnetic state. 
Figure 4 shows a typical dispersion Cilrve slightly below the concentration 6*. For the 
smaller clusters (up to 12 x 12) the instability occurs at the X point (q = (n, 0)). This 
point has, however, no deeper physical significance, contrary to the speculations in [18] 
for the two-hole case. In our calculations it turns out that thc X point is part of, or close 
to, theFermi surface forthese system sizesandfor the concentrationwhere theexcitation 
energy becomes negative (6, = 0.3). In fact, the minimum of the excitation energy 
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Figure4. Low-lyinpexcitationsofthe2DHubbardmodel tor the 12 x 12clusterwith57holes 
(6 = 0.40). 

occurs at kF. This can either be verified for a small cluster at higher hole concentration 
(figure 5) or for a bigger cluster. In the latter case (figure 6) we  also see that the spin 
wave stiffness constant is still positive, while the ferromagnetic state is already unstable 
due to the single-particle excitation at kF. 

Next we study the &dependence of the dispersion curve. In figure 7 the excitation 
energy for q = ( E .  0) is depicted for various cluster sizes. We find a rather universal 
behaviour for all system sizes: a linear increase for small 6 and a transition to negative 
valuesat 6 = 0.29. Ithasbeenarguedin[Z] thatthestabiiityoftheferromagneticphase 
at small S is due to the 62-dependence of the kinetic energy of the .1 -spin electron. This 
particular 6*-dependence is, however. an artifact of the Gutzwiller wave function and 
is not agenericargument for thestability of the ferromagneticstate. Thisisnot surprising 
as the result for U = isobtained by merely projecting out double occupancies from the 
U = 0 solution. The wave function implicitly used by Roth already shows a linear 6- 
dependence of EAn. We obtain for the (20 X 20) cluster with 6 s 0.1 the following 
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FigoreS. Low-lyingexcitationsofthezoI.lubbardmodelfor1he 12 x 12clusterwith83 holes 
(6  = 0.58). 



0.40 

0.30 - 

\ 0.20 - 
- * - 

bN 

I J A  ;. 
W 

-0.10 

Figure 6.  Energy dispersion of the ?D Hubbard model for the 16 x 16 cluster with 69 holes 
(6 = 0.27). 

dependence: 

E$, = rlt1(0.76+3.76’)+Eo E$in = -z/t1(0.26+4.06’). (5.1) 

Since Edin corresponds to the bottom of the 1 -spin electron the band width is twice the 
value of the kinetic energy. The kinetic energy for the -spin electron for arbitrary k is 
to a good approximation given by Edin@) = q E@), as given in (3.9),  and the narrowing 
factor q ,  for small 6 would be, according to (5.1), q I = 0.26 + 4.06’. At this point it  is 
interesting to compare this with the result of the dominant termapproximationdiscussed 
by Vollhardt 1241. This approximation has been employed by Rice and Ueda [42] for the 
periodic Anderson model within the framework of the heavy-fermion problem. The 
exact result for the energy of the Gutzwiller wave function for one reversed spin yields, 
according to  (2.8), q = d. The dominant term approximation leads to [24] q ,  = 6 in 
the thermodynamic limit. The exact evaluation of the Gutzwiller unsafz yields therefore 
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Figure 7. Excitation energy for q = (I(, 0) as a function of the hole concentration (closed 
shellsonly)andforvariouslatticesires:S X 8(0), 12 X 12(0),  16 X 16(*)and20 x ZO(+). 
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the wrong &dependence for 4,. The dominant-term approximation gives the right 6- 
dependence. but with a prefactor that is one order of magnitude too big. This has an 
important impact on the question of ferromagnetism in the heavy-fermion problem. 

We now consider what conclusions can be drawn from our results about the stability 
of the strongly ferromagnetic state in the thermodynamic limit N +  m. The discussion 
above, for example that of figure 6 ,  indicates that this state first becomes unstable via 
single-particle excitation in which an electron is removed from the T -spin Fermi surface 
and placed in a state with k = 0 at the bottom of the & -spin quasi-particle band. The 
question is whether thisexcitation energy is positive or not, for a given hole concentration 
6. Forclosed-shellsituations thewavevectorqoftheexcitedstate,relative to the unique 
Nagaoka state, is equal to a Fermi wave vector but for the range of 6 of interest a close 
upper bound for theexcitationenergyisobtainedwithq = (n, 0). Thisexcitationenergy 
is plotted in figure 7 as a function of 6 for different system sizes. The small scatter, 
particularly at small 6, suggests that these results are close to the thermodynamic limit 
and that there are no negative excitation energies for 6 < 0.29. It is interesting to 
compare figure 7 with figure 2, where the peaks in the data correspond to closed-shell 
results within Roth's approximation. In the latter case there is marked downward shift 
of the peaksfrom the 8 x 8 to the 16 x 16 cluster as the thermodynamic limit (essentially 
the curve for the 100 x 100 cluster) is approached. The absence of such an effect in 
figure 7 further supports the suggestion that the results in that figure are close to the 
thermodynamic limit, 

In figure 8 we plotted the lowest excitation energy for any wave vector and for all 
numbers of holes in an 8 X 8 lattice, We obtain negative excitation energies even for 
6 < 0.29. Incases where the lowest excitation energy iszero, corresponding to the trivial 
state of zero-wave-vector spin wave, the result plotted is for q equal to a Fermi wave 
vector, to aid comparison with figure 2. There is an overall similarity between figures 2 
and 8 but in the latter case the fluctuations between closed and open shells are reduced 
by a factor 2. If in the thermodynamic limit there are no negative excitation energies for 
6 < 0.29 we expect the negative values in this range in figure 8 to tend to zero as N +  = 
with increasing system size. To illustrate this tendency, figure 8 also contains results for 
the 16 X 16 cluster for a few typical hole concentrations, which exhibit the largest 
fluctuations. To sum up, we can conclude rigorously from figure 7 that the strongly 
fcrromagneticstate isunstable for 6 > 0.29and that it isveryprobably stable for 6 < 6,, 
where 6,, is somewhat smaller than 0.29 hut non-zero. 

We close the discussion about the infinite-Ulimit with the results for the momentum 
distribution function. Tables 2 and 3 show the values of n(k) for 6 = 0.08 and 6 = 0.33, 
respectively. Both results are for the X point in k-space. For the T -spin electrons the 
difference An f ( k )  = n T (k) - no(k) from the Nagaoka state is given. In the first case of 
low density (table 2) we observe that An f (k)  is uniformly distributed proportionally to 
n"(k). This is precisely the result we obtained for the simple spin wave umurz. The same 
is true for the momentum distribution for the -spin electron. We see in table 2(b) that 
ns(k) a no(k-  9 ) .  These findings confirm our conclusions, based on the dispersion 
curves, that the low-lying excitations of the Hubbard model for low hole concentrations 
(6 S 0.15) are spin waves. Also, in agreement with our earlier results, the momentum 
distribution for 6 = 0.33 given in table 3 resembles very much that of a single-particle 
excitation. n t (k) is strongly reduced in a localized region near k = (n, 0) and n ( k )  has 
aclearstructure neark = (0,O). Themomentumdistribution forinfinite Ugiven in table 
3 resembles much more closely the ideal case of a single-particle excitation (U = 0) than 
that of the Gutzwiller unsutz sketched in figure 1. However. the rather uniform Ani (k) 

W oon der Linden and D M Edwards 
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Table2.Valuesfor themomentumdistributioninunitsof0.01 forthe8 X Bclusterwithfive 
holes (6 = 0.08) for the state with momentum q = (0, a). (U) For the t -spin electrons; the 
difference An'(k) = n t(k) - no(k). (b) For the L -spin electron. The k. and k,coordinates, 
in units of z/4, are indicated at the bottom and left, respectively, of each part of the table. 

4 
3 
2 
1 
0 

-1 
-2 
-3 

1 -3 
-3 -2 
-2 -2 
-2 -2 
-2 -2 
-2 -2 
-1 -2 
-3  -2 

-2 -2 
-2 -2 
-2 -2 
-2 -2 
-2 -2 
-2 -2 
-2 -2 
-2 -2 

-2 -3 1 1 
-2 -2 -3 2 
-2 -2 -2 -2 
-2 -2 -2 -2 
-2 -2 -2 -2 
-2 -2 -2 -2 
-2 -2 -2 -2 
-2 -2 -3 2 

4 1 1  2 2 2 2  2 1 1 
2 2 2 2  2 2 1 

2 2  3 1 2  2 2 2 2  2 2 2 
2 2 2 2  2 2 0 

2 2 2  2 0 0 
2 2 2  2 2 0 

-1 : I :  2 2 2 

2 2 2 2  2 2 2 
-3  -2 I : 2 2 2 2  2 1 1 

1,-3 -2 -I 0 1 2 3 4  

over much of the zone, which is spin-wave-like, indicates that the 4 -spin quasi-particle 
has a strong ( T -spin particle + magnon) component as in the wave function (2.9). The 
physical picture is therefore asobtained by diagrammatic approaches [26-29]. For small 
hole concentration the single-particle excitations are much higher in energy than the 
Goldstone mode (spin waves), which have a $-behaviour at the r point. The spin wave 
stiffness constant is, however, strongly reduced by correlation effects as compared with 
thesimplespinwaveorw~result. Withincreasingholedensity thegainin kineticenergy 
of the 4 -spin electron overcomes the loss in kinetic energy of the t -spin electrons and 
the energy for a spin-flip lies below the Fermi energy of the T -spin electrons. Above 
the critical hole concentration, the ferromagnetic state is unstable. 

We conclude for U = m that the strongly ferromagnetic state is the ground state for 
6 < 6,. On the other hand for U = 0 the ground state of the Hubbard model is non- 
magnetic. There exists therefore a critical on-site repulsion U*(6) ,  below which the 
ferromagnetic state becomes unstble. As expected from strong-coupling peexbatioa 
theory, we find that the ground state energy behaves as follows: E(U) = E(=) - a/U 
(a > 0). This illustrates the gain in energy due to short-range antiferromagnetic order. 
For the system sizes and hole concentrations under consideration a is of the order of 
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4 
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2 
I 
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-1 
-2 
-3 

Table3. Values for the momentum distribution in units of 0.01 for the 8 X 8 cluster with 21 
holes (6 = 0.33) for the state with momentum q = (0, x). (a) For the -spin electron; b e  
difference An f (k) = n 1 (R) - no(k) is given. (b) For the J. -spin electron. 

1 2 -2 -2 -2 2 1 0 
1 4 -2 -2 -2 4 1 0 
2 -2 -2 -2 -2 -2 2 1 

-4 -2  -2 -2 -2 -2 -4 -21 
-4 -2 -2 -2 -2 -2 -4 -9 
-4 -2 -2 -2 -2 -2 -4 -21 

2 -2 -2 -2 -2 -2 2 1 
I 4 -2 -2 -2 4 1 0 

I -  3 - 2 - 1 0 1 2 3 4 

4 -2 

1 1 1 1 1 1 1 1 
I 1 1 I 1 I 1 I 
0 1 2 2 2  1 0 0 
0 1 3 3 3 1 0 0 
0 1 10 6 IO 1 0 0 
0 1 3 3 3 1 0 0 
1 1 2 2 2 1 0 0 
1 I 1 1 1 1 I I 
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Figures. Excitationenergyat k = kF(seetext) for 
8 x 8(t)andalipossiblenumbersofholesl.. . . , 
32 and for 16 x 16 (0) at a few important hole 
concentrations. The latter points occur in pairs, 
the upper one corresponding to a closed shell and 
the lower one to the closed shell minus one hole. 

Figure9. Phase diagramoftheHubbard model as 
functionof6and W[lJ.where Wisthe bandwidth. 
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101tl. Assuming a constant 1y for small hole concentration-which is in very good 
agreement with numerical result+-together with E(m) = y6 (equation (5.1)) we con- 
clude that the phase boundary in the (6, W/U) phase space is linear in 6 as first predicted 
by Nagaoka [14]. In figure 9 the phase diagram obtained for the (8 x 8) cluster is given. 
The strongly ferromagnetic state is unstable for all densities if U < 421tl. These results 
are in qualitative agreement with those of [43]. where a variational method was used 
exploiting a modified Gutzwiller wave function as proposedin [a]. Usinga perturbative 
treatment, the authors of [44] found that no ferromagnetic phase exists for U/W < 2, 
which is the region for which the scheme yields reliable results. 

A strong Uis thus necessary to stabilize the ferromagnetic state. The critical U* that 
we find is, however, significantly smaller than that obtained by recent slave-boson mean- 
field calculations [3]. We observe the following behaviour of the low-lying excitations 
on reducing U the bottom of the single-particle continuum comes down in energy and 
pushes down the spin wave branch; the latter eventually becomes negative first at kF; 
for small U the minimum near k, is much more pronounced than has been found in the 
case of infinite U. 

6. Summary 

We have studied the low-lying states of the two-dimensional Hubbard model with one 
1 -spin electron and an arbitrary number of T -spin electrons as a function of the on-site 

repulsion U and the hole density 6. The analysis has been done in the framework of a 
wave function, which was proposed by one of the authors [22]. It is known that the 
amarz is exact in ID. The underlying physical idea, however, is not restricted to ID and 
comparison of numerical results with exact data for small clusters shows that the ansatz 
is very accurate in ZD as well. We have studied systems of size 8 x 8,12 X 12, 16 x 16 
and 20 x 20 for all possible hole concentrations. To see whether the ground state is ever 
ferromagnetic, we investigated the infinite-U case in great detail. It has been possible 
to follow a single branch of the spectrum throughout the entire Brillouin zone, by 
considering only closed-shell systems. For open-shell situations this is very difficult, as 
the non-interacting ground state is degenerate and several reference (Nagaoka) states 
are possible. The degeneracy of the Nagaoka state leads to a superposition of low-lying 
bands, each starting at a different point in the Brillouin zone. This is precisely what one 
expects in the thermodynamic limit. For N--t 10 the Fermi volume can he rearranged 
slightly, which involves only energy changes of order 1 / N ,  to construct Nagaoka states 
with arbitrary total momentum K. Each of these states can serve as the origin of a 
dispersion curve similar to the one we obtained for the closed-shell situations. Conse- 
quently, the bottom of the low-lying excitation spectrum should he dispersionless in the 
thermodynamic limit. However we have interpreted the dispersion curves of figures 3- 
6 for finite N in terms of spin wave and single-particle excitations from a particular 
Nagaoka state and discussionoffigures7,8 and Zindicates that correspondingexcitation 
energies are close to their values in the thermodynamic limit. From the dispersion curves 
and the spin-dependent momentum distribution it follows that for small hole density 
6 s 0.15 the low-lying excitations are spin waves with a strongly reduced spin wave 
stiffness constant D .  We find that D is about four times smaller than obtained in the RPA. 
For larger hole concentration the spectrum near kF takes on a single-particle character 
and becomes soft at kF. The energy becomes negative at a critical concentration a,, 
0.29. The critical hole concentration is considerably lower than that obtained earlier 
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using simpler variational wave functions. We conclude therefore that the 2D Hubbard 
model has a small region in the (6, W/U) phase diagram where the strongly ferro- 
magnetic state is the ground state. We find, however, that the generic argument for the 
stability of the ferromagnetic state, claimed by Shastry et al, is not valid. In this paper 
we have concentrated on the instability against a single spin flip. As discussed, the 
instability of the strongly ferromagnetic state indicates that the quasi-particle energies 
for the 1 -spin electrons dips below the Fermi energy of the f -spin electrons. This 
indicates, as found in exact diagonalization of very small clusters, that the energy can be 
lowered even further by flipping more than one spin. Whether the transition is directly 
to a nonmagnetic state, as found in Hartree-Fock calculations by Oles [43], is not yet 
clear. Our results have, moreover, shown that the diagrammatic approaches proposed 
earlier 126-301, which implicitly used Roth's wave function, are rather accurate. These 
schemes have the advantage that they can be applied to an arbitrary number of .1 -spin 
electrons. We reckon that they should yield a fairly accurate basis for further studies of 
the Hubbard model. 
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Appendix 

AI. Kinetic energy 
Here we derive the expression for the kinetic energy. To this end we define new 
operators: 

b$' = q, (x ,  - x,)a;,  (AI) 

W uon der Linden and D M Edwards 

and rewrite the wave function: 

The norm of the wave function is readily written down: 

By means of Wick's theorem we obtain 

(0 I (U b g ) ) ( n  bb,)') 10) = det(S('J)) 
U m 

('44) 

For the norm we need only the result for i = j :  

where S is the overlap matrix S(O.O). 
klx) = d e W  
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The expectation value for the kinetic energy of the 1 -spin electron is obtained in a 
similar way: 

where like in (A4) Wick's theorem has been employed. 
The expectation value for the t -spin electrons is somewhat more complicated: 

We evaluate first the expression for the summand in a slightly generalized form, with 
different centres I ,  l ' ,  as we will need it for the momentum distribution functions as well: 

According to (A4) the first term on the RHS is, apart from the Kronecker 6, 

(01 ( n b r ) ) ( v  bioi) 10) = det(S('.')). 

(01 (n e bo.)) a i r  a:, (n a b p ' )  10) = det(N1). 

(A101 

b(o* 0 - - at i l  b y )  = ai?, (All)  

(A121 

To evaluate the second term on the RHS of (A9) we introduce auxiliary orbitals: 

Again invoking Wick's theorem, we obtain 

The matrix Mm8 is identical to S$o for a, p = 1,. . . , N , ,  but it contains one additional 
column and row with index 0: 

Moo = (Olbf)b$"lO) = 6i,i 
M d  =(Olbr)b$lO)= (p ; t (x j -xp ) .  

Moo = (Olbp')bho'10) = ( p ~ ( x i  -XI) 

('413) 
On adding to the 0th column of M a proper linear combination of the other columns, 
which leaves the determinant unchanged, one can make all elements of this column 
vanish, except the (0,O) element. The determinant we seek is therefore 

N l  
det(M) = det(S("0) 1 - 2 ~ ~ ( ~ ~ - x ~ ) S ~ ~ ~ - ~ ( p ~ ( x ~ - x , ~ ) ) .  (A14) 

The expression in brackets is the 0th element of the transformed 0th column. Collecting 
(A14), (A12), (AlO), (A9) and (AS) we obtain 

(01 ( f lb (k . ) )  a:, U,? (! 6:) ' )  10) 

( rr.8=l 

(A151 
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For the kineticenergy we only need 1 = I ' .  The first factor on the ~ ~ s o f  (A15) is therefore 
the norm of the wave function. Inserting (A15) into the kinetic energy expression (AS) 
and dividing by the norm leads to 

W von der Linden and D M Edwards 

A2. Eigenvalue equation for non-orthonormal orbitals 

To generate the energy expression in non-orthonormal orbitals 

E = t tr(S-'Sh) + t x  det(S-'S") e-iV.A 
h d 

+ ~ ~ . ~ ~ ~ c p : ( o ) c p s ( o )  
4 

with respect to q ~ ;  (i) we will make use of the following results: 

We perform the following tedious but straightforward steps: 

(i) differentiate (A17) by using (AB) and equate the result to zero; 
(ii) multiply both sides with S;jn and sum over 0; 
(iii) perform a Lowdin transformation to orthonormal orbitals: 

and we end up with the eigenvalue equation for the orthonormal orbitals @& 

The overlap matrices S are evaluated with the orthonormal orbitals. 
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A3. Momentum distribution 

~ 
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In this section we assume orthonormal one particle orbitals qw. The overlap matrix S is 
therefore the unit matrix and the nom klx) = 1 .  By making use of the operators b', b 
of section AI of this appendix, the momentum distribution for the t -spin electrons is: 

Together with (A17) for orthonormal orbitals we obtain 

with p,(k) being the Fourier transform of q,(x), as is obvious from (A22). For the J - 
spin electron 

Along with (A12) we finally obtain the desired expression: 

1 
&Inrl Ix) = ei(k-q)'rr det(S(',o)). ('424) 

I 
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