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Ferromagnetism in the Hubbard model

W von der Lindent and D M Edwards

Department of Mathematics, Imperial College of Science, Technology and Medicine,
London SW72BZ, UK

Received 22 February 1991

Abstract, The stability of the ferromagnetic state with complete spin afignment against a
single spin reversal is studied in the square-lattice Hubbard model with nearest-neighbour
hopping. A variational ansarz is used, which is exact in one dimension and by comparison
with accurate results for small clusters yields almost exact results in the two-dimensional
case. The ferromagnetic region in the (W/U, 8) phase diagram is mapped out, where Wis
the bandwidth, U the on-site electron interaction and & is the number of holes per atom,
Thisregion iscensiderably smaller thanin previousvariational calculations and itis rigorously
concluded that the state of complete spin alignment is unstable when 8 > 0.29, for all U, and
when W/U > 0.19, for alf 8. The nature of the instability, and of the low-lying excitations in
the ferromagnetic state for varying § and W/V, is discussed.

1. Introduction

The Hubbard model [1] is the simplest model of strongly correlated electrons in narrow
bands. It is once again being studied intensively due to its postulated relevance to the
high-temperature superconductors. However, little is known for certain about the phase
diagram of the model, even at T = 0 K. One of the first applications of the model was to
the study of itinerant electron magnetism. The Hartree—Fock approximation led to the
Stoner criterion, which states that the ground state is ferromagnetic if Up(Eg) > 1,
where U is the on-site interaction strength and p(Er) the density of states at the Fermi
energy. It was soon clear [1,2] that the introduction of correlation effects leads to
a much more stringent condition for the ferromagnetic phase. Improved mean-field
approximations, within the slave-boson approach (3], led to a very small ferromagnetic
region in the phase diagram. Although the accuracy of the method is uncertain it does
appear that very large values of U are required to stabilize the ferromagnetic state. This
agrees with quantum Monte Carlo results [4] for intermediate U where no ferromagnetic
phase has been found. However, in view of the small clusters and relatively high
simulation temperature used, these results could be misleading.

There are a few rigorous results for the Hubbard model but these are restricted to
the one-dimensional model or, in higher dimensions, to the half-filled-band case of one
electron per atom. For the one-dimensional case many properties are accessible via the
exact Bethe ansatz (5, 6]. Lieb and Mattis [7] have proved that due to the special topology
of the one-dimensional problem the ground state for any even number of electrons is
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always a non-magnetic singlet independent of U. For higher dimensions and half filling
it has been shown recently [8] that for a bipartite lattice with N, (Np) sites on sublattice
A and B, respectively, the ground state is non-degenerate and has total spin 5=
3| N4 — Np|, which is valid as long as U > 0 independently of the dimensionality. In
particular, for N, = Ny (1D, square lattice and sC) the ground state is therefore a singlet.

Away from half filling the situation is less clear. In the large-U limit, the Hubbard
model can be mapped onto the -J model (for areviewsee [9]), which contains a restricted
hopping term, allowing no doubly occupied sites, together with an antiferromagnetic
Heisenberg Hamiitonian for the spin degrees of freedom. The pure Heisenberg model
of the half-filled case leads to antiferromagnetism with algebraic long-range order in 10
{10} and long-range order in 2D [11, 12]. The kinetic energy, however, destroys the
antiferromagnetism rapidly with increasing hole concentration [9, 13].

Asfar as the ferromagnetic part of the phase diagram is concerned very little is known
for sure. Nagaoka has shown in his pioneering work [14] that for most lattices, with
nearest-neighbour hopping and infinite on-site interaction U, the strongly ferromagnetic
state, with complete spin alignment, is stable for the case of one hole in an otherwise
half-filled band [15]. For two holes on a square lattice, again with U/ = e, Doucot and
Wen found that a long-wavelength twisted spin state has lower energy than the strongly
ferromagnetic state [16]. This is in agreement with results obtained by exact diag-
onalization for small systems up to 8 X 8 [17-19]. Fang et af {18] find for 2-4 holes that
the strongly ferromagnetic state is unstable and that the energy can be lowered by
flipping more and more spins. On this basis it is argued that the true ground state is
presumably a singlet. In the thermodynamic limit, however, the ground state for these
cases is degenerate with the Nagaoka state. This is reasonable as the hole concentration
tends to zero as the number of sites tends to infinity. It is important to note that finite-
size effects are crucial in the Nagaoka problem and that one can easily be deceived by
the results for such a small number of holes, as we will discuss later on. Even the choice
of boundary conditions changes the resuits in these small systems completely [19, 20].
We will see later that closed-shell configurations (N, =1, 5, 9, 13, ... in 2D) favour
ferromagnetism, whereas open-shell configurations (V, = 2,3,4,6, 7,8, . .. in2D) tend
to destabilize it. This point has been emphasized previously by Barbieri et af [21]. It
explains the discrepancy between the Nagaoka result for Ny, = 1 and those for Ny = 2,
3, 4. Here N, is the number of holes, which equals N — N, where N, is the number of
electrons and N is the number of sites.

Barbieri et al [21] reported analytic results for N, large, but still less than a finite
fraction of N. More precisely they show that for N, < In(N) in 2D, and N, < N'? in 3D,
the strongly ferromagnetic state in the infinite-/ Hubbard model is locally stable with
respect to a single spin flip. This is a considerable extension of Nagaoka’s results [14]
but is still restricted to a vanishing hole concentration 8 = N,/N in the thermodynamic
limit N — 2. Thus none of the rigorous arguments addresses the question of whether the
Hubbard model in two or three dimensions has a ferromagnetic phase.

Inthis paper we base a numerical analysis of the stability of the strongly ferromagnetic
state in the 20 Hubbard model on a variational wave function proposed by Edwards
[22] for the state with a single spin reversal. The wave function is exact for the one-
dimensional gas with d-function interaction as well as for the 10 Hubbard model. Since
it is of a rather general form, based on a physical idea that is not restricted to 1D, itis a
very good wave function in higher dimensions as well. In section 2 we recall the most
important previous variational approaches and discuss the physical mechanisms that
may drive the instability of the ferromagnetic state. The variational ansarz is the subject
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of section 3 and we derive all the expressions needed for the numerical analysis. Section
4 contains some brief technical remarks which may be of general interest, The results
are detailed and discussed in section 5.

2. Variational approaches

To consider the stability of the strongly ferromagnetic state with finite hole density in
the thermodynamic limit, approximate methods have to be used. We will concentrate
the discussion on rigorous variational methods for states with just one reversed spin. A
negative spin-reversal energy definitely indicates instability of the strongly ferro-
magnetic state. We will denote the ground state energy for a given trial wavefunction
Y(gq) by E(g). To establish the notation we define the Hamiltonian of the Hubbard
model:

H=—1t 2 afaaja+UEn;¢niT (21)

(o i

where a}, (a;,) creates (annihilates} a fermion of spin o= 1, | atsite {,t> 0 is the
hopping matrix element, U/ represents the on-site Coulomb interaction, and ¢/, j} indi-
cates that only nearest-neighbour hopping is allowed. In the strongly ferromagnetic
(Nagaoka) state, for which all electron spins are parallel, the particles do not experience
the on-site repulsion /. The electrons in this state therefore occupy single-particle Bloch
states a}, with corresponding single-particle energies

g(k) = —1 >, eikd (2.2)

where summation is over nearest-neighbour vectors A, Throughout this paper we set
the lattice constant equal to one. The Nagaoka state is
1K) = 11 a}y |0 (2.3)
kEK
where K is the set of wave vectors with lowest single-particle energies £(k) and |0} is the
vacuoum state. The ground state energy of the Nagaoka state is
Eo= 2 e(k). @2.4)
kEK
The wave vectors k& may be divided into shells, all wave vectors within a given shell
having the same value of £(k). The non-interacting ground state (Nagaoka state) | K} is
unique only for, what we will call, closed-shell configurations. For an electron number
corresponding to an open-shell configuration the non-interacting ground state is
degenerate and several Nagaoka states are possible.

There are two possible mechanisms driving the instability of the ferromagnetic state,
which we will discuss separately: single-particle excitations and spin waves, We will
discuss these cases in some detail to clarify the underlying physical ideas and to establish
notation, which we will need in the discussion of our results.

2.1. Single-particle excitations

To create a single-particle excitation with momentum ¢, an 1 -spin electron is removed
from the occupied states with momentum & and is placed with reversed spin into a | -
spin quasi-particle state with momentum & + g. In the Hartree-Fock approximation the
corresponding wave function reads:

[PHFA (g)) = azk-i-q}l arq |K) (2.5)
leading to an excitation energy wy(g) = e(k + ¢) — e(k) + Up, where p = N./N is the
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Figure 1. Schematic spin-dependent momentum distribution functions predicted by the
Gutzwiller ansatz y°* for k = k¢ and k + ¢ = 0. The upper distribution is for the 1 -spin
electrons and the lower one for the | -spin electron.

density of electrons. The lowest excitation energy is obviously achieved if the 7 -spin
electron is removed from the Fermi surface & = &y and the | -spin electron is placed at
the bottom of the band & + ¢ = 0. Thus the momentum change ¢ corresponds to a wave
vector on the Fermi surface. More precisely, the total momentum is actually ¢ + K. The
momentum K of the Nagaoka state can, however, be considered as the origin in k-space.
We measure henceforth all wave vectors relative to the respective Nagaoka state, if not
stated otherwise. For closed shells X is (&, 7) for & < 1/2 and (0, 0) for > 1/2. The
sole influence of the interaction in the Hartree-Fock approximation is a rigid upward
shift of the | -spin electron energy by pU, which is incorrect for two reasons. It certainly
overestimates the cost in energy to create a | -spin quasi-particle and it misses the band
narrowing arising from the strongly restricted mobility of the | -spin electron. Forlarge
U (2.5) is certainly not an appropriate wave function. Real-space configurations with
many doubly occupied sites have too large a weight in this mean-field wave function.
This weight is reduced in the Gutzwiller wave function [23, 24]:

(wOAy = TT(1 = nayy nyp ) WHFA). (2.6)

n is a variational parameter monotonically increasing from 0 to 1 with increasing U.
Within the framework of the Gutzwiller wave function one can study nicely how the | -
spin electron spreads out in k-space with increasing U. The spin-dependent momentum
distribution n,(p) = (¥|n, ,|¥I/(¥[¥) is

. L 1-p _ p
”T(P)‘”a(")(l " N(I-an+nzp))+(l O T Zge 1)

2
oo k+ D)1= 10)* + (o~ 3y SO+t g-pnt(®)
)= (1-2np+1n°p) T @7

Here n% p) is the momentum distribution of the 1 -spin electronsin the state 2,4 |[K) and
is 1if p € {K/k} and 0 otherwise. 8(k, k") is the Kronecker delta symbol and the 1 -spin
electron density o = N; /N. The momentum distribution is schematically depicted in
figure 1. The number of T -spin electrons scattered out of the occupied states (shaded
area in upper panel of figure 1) increases from 0 to p as U increases from 0 to o, At the
same time the weight of the delta function at the bottom of the | -spin band declines
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gradually from 1 to 6 and the momentum distribution of the ] -spin electron gains more
and more weight outside the Fermi surface of the T -spin electrons. The expectation
value of the energy for U/ = = and one reversed spin has been studied recently by Shastry
et al [25]. The excitation spectrum consists of a continuum of scattering states with
minimum at total momentum g = &g:

wi(g) = ({Eo|/NS — £(k)) + e(k + )6(1 — |E¢/Nb2{?). (2.8)

z is the number of nearest-neighbour sites, The first term is the kinetic energy of the 1 -
spin electrons and the second that of the | -spin electron, which correctly includes a
band-narrowing factor. It was found in [25] that the excitation energy is positive up to a
critical hole concentration 8 = 0.49 for the square lattice and &, = 0.32 for sc. The
instability of the ferromagnetic state for 6 > &, is driven by single-particle excitations
atgq = k.

Roth [26] first discussed this instability in detail within an approximation scheme
equivalent to one used earlier by Edwards [27, 28] for discussing spin waves (see also
[29]). It has been shown {30, 31] that Roth’s method is equivalent to a variational ansatz
with a wave function superior to the Gutzwiller ansatz, as it has more variational
flexibility. The trial wave function implicitly used by Roth reads

|IPR(Q)> = (a€q+k|:)l + 2 B(k)aIT Sq_'+k}:—k) ak]:‘{‘ |K> (29)
k

where §; is the approximate magnon creation operator:

S; = 2ervia a;, = Ek: I (2.10)
)

where x; is the position vector of site j. In the limit U = =, equation (2.9) simplifies to
[WR(9)) = X BUOSGse-4@h1 upr | KD (2.11)
k

which has no double occupancies because according to (2.10) the | -spin electron is only
created at empty sites. This reduces to the Gutzwiller ansatz used [25] if B(k) is taken as
aconstantindependentof&. The ansaiz (2.11) leads to lowerenergies than the Gutzwiller
ansatz and also to a critical hole concentration about 209 smaller, namely §, = 0.41
[32] for the square lattice and &, = 0.24 for the sc [26], respectively.

On minimizing the ground state energy with respect to B(k) a self-consistency
equation for the excitation energies w(g) = E(q) — E; is obtained [26]. Roth’s wave
function is a good approximation for the single-particle excitations and is therefore well
suited to study the finite-size effects present in the Nagaoka problem. This wave function
has the advantage that the ground state energy is easily accessible by nuemerical tech-
niques, even for very large systems. The lowest excitation energy, which again appears
at the Fermi wave vector, is depicted in figure 2. It shows typical finite-size effects, which
we will encounter later in the numerical evaluation of the wave function proposed by
Edwards [22]. The maxima belong to closed-shell situations, as we have mentioned
earlier. Qualitatively, a closed-shell situation corresponds to a much too low density of
states at kr due to the presence of the finite-size gap, whereas the opposite is true for the
apen shells. The picture is qualitatively the same for the Gutzwiller ansatz [19]. Finite-
size effects are more severe in the accurate calculations of section 5 as the energies are



4922 W von der Linden and D M Edwards

1.0

Q5 F

ENERGY / [

0.0 0.2 0.4 0.6 0.8 1.0
HOLE DENSITY

Figure 2. Minimum excitation energy w(g = k¢) obtained from Roth's wave function for
cluster sizes 8 % 8 (full curve plus crosses), 16 x 16 (full curve) and 100 x 100 (thick full
curve) for all possible numbers of holes,

somewhat lower and the shell effects depicted in figure 2 lead to sign changes. Closed-
shell configurations up to a critical concentration all have a positive excitation energy
whereas most of the open-shell configuration would indicate an instability of the ferro-
magnetic state. This is the origin of the discrepancy between the Nagaoka result for one
hole and the results obtained for 2—4 holes. Finite-size scaling for the open-shell results
is, however, complicated due to the degeneracy of the Nagaoka states. The situation is
much more transparent for the closed shells and in section 5 we focus our discussion
mostly on closed shells.

2.2. Spin waves

We have just seen that single-particle excitations make the ferromagnetic state unstable
above a critical hole concentration. In addition, there is also the possibility that the
Goldstone modes (spin waves), which tend to restore the broken rotational symmetry
anyway, may become soft and lead eventually to an instability of the ferromagnetic
state. The critical hole concentration could thus be reduced to a lower value or even to
zero. The simplest spin wave conceivable is given by

|wSW(g)) = 57 |K) (2.12)

with the approximate magnon operator (2.10). For 4 =0 this wave function is an
exact eigenstate of the Hubbard Hamiltonian with maximum total spin. It is therefore
degenerate with the Nagaoka state. For U = oo, ¥¥(4) is equivalent to the random-
phase approximation [33]. The excitation spectrum of the simple spin wave ansatz (2.12)
is given by:

@™ (q) = 53 (etk + ) = e(1)n°0) 2.13)

and is shown in figure 3. For small 4 the energy can be expanded and yields in leading
order

w(g) = Dg* (2.14)

which defines the spin wave stiffness constant D. In the present approximation
DSSW = | El /4Np and for small hole concentration D% = §[¢].
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Figure 3. Excitation energies of the simple spin wave ansafz (%) multiplied by 0.347,
compared with the Jow-lying excitations in the FHubbard medel (A) as discussed in the text.
The results are for the 12 x 12 cluster with 21 holes {é = 0.15). The inset shows the high-
symmetry lines and the Fermi points along these lines.

The momentum distribution of the simple spin wave state can easily be derived from
(2.12) and yields

n’ (k) = (1 = 1/N)n°(k) nt (k) = (1/Nn(k - q). (2.15)

The difference between the single-particle excitations and the spin waves is most obvious
for the | -spin electrons. In the former case the electron was predominantly in one k-
state, whereas in the latter the | -spin electron is homogeneously distributed over the
Fermi volume of the Nagaoka state shifted by g. We will use these features in the later
discussion to classify qualitatively the low-lying excitations.

A wave function that contains both spin waves and single-particle excitations has
recently been studied by Shastry et a/[25]. They used the Gutzwiller-projected RPA wave
function:

(W oReA(g)) = [T (1 = gy niy ) RPA (g (2.16)
with
WA = X CWadsg1 avt K0 2.17)

In [25] the limit £/ = o ( = 1) is studied and it is found that the bottom of the Stoner
continuum at kg pushes the spin wave branch down and both become negative at k¢. The
critical concentration is about the same as was obtained with the Gutzwiller ansatz
WOAg).

3. The ansat:

In this section we present an ansatz due to Edwards [22] which is exact in one dimension.
As we will see, the underlying physical idea is fairly general and not restricted to one
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dimension. To begin with we consider the k-space representation for the most general
form of exact wave function with one reversed spin:

lx(a)) = EC(Q)% o 1) (3.1)

In (3.1) the summation is over all possible N, -tupels {J of wave vectors & for the 1 -spin
electrons:

10y = 11 ai;i0) 0= 2k
kEQ k€Q
The ansatz proposed in [22] is equivalent to replacing the unknown function C(Q) by a
determinant of one-particle orbitals @ .(k), « = 1,..., N;. The number of variational
parameters is therefore drastically reduced from (¥, ) to merely N{N. = 1). The under-
lying physical idea that led to this ansatz becomes immediately clear in the real-space
representation of | x(q))'

1) = o Ee‘”mﬂ(z%(x ~=afy ) [0) (3.2)

§4(x;) are the Fourier transforms of the linearly independent one-particle orbitals ¢ (k)
of the k-space representation. If the | -spin electron were to be fixed, say at position x;,
the exact many-body wave function for the T -spin electrons would be a single Slater
determinant of one-particle orbitals centred at x;. This is because the { -spin electrons
interact only with the | -spin electron, which in turn serves as a static potential at site
x;. If the motion of the | -spin electron is taken into account, the wave function has to
be a coherent wave of such states for all possible | -spin positions. This leads to the
ansatz (3.2). This wave function is a special case of the one used by Wigner and Seitz
[34] in their work on electron correlations in jellium. Richmond and Rickayzen [35]
have elaborated upon the simplified version with the | -spin electron fixed at one
site. This gnsatz has the advantage that most quantities of interest can be computed
analytically by means of scattering theory; however, it is not adequate for an analysis of
the stability of the ferromagnetic state. It predicts, for example that for U = % the
strongly ferromagnetic state is always the ground state for arbitrary hole densities, which
is in contradiction to the exact results for low electron densities [2] and to the results
discussed in section 2.

The motion of the | -spin eleciron leads to a very interesting momentum-dependent
interaction for the 1 -spin electrons [22], or else, after a canonical transformation, to
long-range many-particle interaction. It has been shown in [22] that the wave function
(3.2) is exact in one dimension. For the gas case, the one-particle orbitals @ ,(x;) can be
explicitly constructed following the ideas of McGuire [36], which started the dev-
elopment leading to the Bethe ansaz. In contrast to the assumptions leading to the exact
solution in the one-dimensional problem. the physical ideas underlying the ansatz (3.2)
are not especially geared to 1D, and it is not easy to see why it should not be a very good
wave function, if not even exact, in higher dimensions. As a matter of fact, y(g) in (3.2)
is very flexible. It covers, forinstance, ali the variational wave furnctions that we discussed
in the previous sections. To recover the RPA wave function WRPA(g) of (2.17) the one-
particle orbitals entering (3.2) take on the form

N1

P, (x,) = T— 2 ei2HING gikexi Cm1(k)), (3.3)

The Hartree-Fock wave function IWHF”‘(q» and the simple spin wave ansatz{¥S¥(q))
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are merely special cases of WRFA(g) with C(k) = &, ;, for the former C(k) = constant for
the latter, respectively. The treatment of the Hartree—Fock wavefunction is somewhat
tricky in (3.3) but it is immediately evident when using the k-space representation
(equation (3.1)} with C(K) being the Slater determinant of occupied 1 -spin orbitals
with @ (k) = 8,4, {k,} is the set of wave vectors occupied by the 1 -spin electrons in
(2.5). The Gutzwiller projection operator is easily incorporated. Operating with

1@ =i my)
on the wave function (3.2) vields
1 ,
(@) = g 2 € maly (1 -y ) I (Z @ulr; — x)af; ) 0. (4
i @ {

The factor (1 — nr;, ) leads to modified one-particle orbitals ¢,(x,) in (3.2):
Folx) = @alx)(1 ~ 56,0). (3.5)

Consequently for U — o (57— 1) the value for the central site, which is a measure for the
number of double occupancies, tends tozero: §,(0) — 0. Forsmall hole concentrations it
is more convenient to perform a particie-hole transformation for the { -spin electrons:
GIT - th s @iy — hIT s leading to:

e =7y S ewialy T (S gate, = 5 | 10 (.6

The new vacuum state |0} is the state where every site is occupied by an { -spin electron.
The number of variational parameters is N{(N, — 1), which is more economical for
8 < 0.5. In the hole case for &/ = = a possible choice of one-particle orbitals, explicitly
avoiding double occupancies, is to localize one hole, say a =1, at the centre:
g1(x;) = 8,0 and to use g,(0) = 0 for the other orbitals. This reduces the number of
variational parameters even more and stabilizes the numerical methods used to deter-
mine the variational parameters.

For the formulae that we will derive now, we stick to the electron case. The analogous
expressions for the hole case are easily obtained by the particle~hole transformation.
We derive the expectation value for the energy for linearly independent but not necess-
arily orthogonal one-particle orbitals. The derivation for the kinetic energy is outiined
in the appendix. The evaluation of the interaction energy is straightforward and needs
no special consideration in the appendix. The three contributions to the energy are

E=E} + E}, + Ep =1 2,e79 det(§-1SW)
A

+r 2 (STIS@) + U X S5k (0)@s(0) (3.7)
A af

with the two-centre overlap matrices given by

S8 =2 @2 (x)@plx; + %), (3.8)

The overlap matrix S is a special case of (3.8) withx = 0.
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As mentioned earlier, it is expected that the hopping of the | -spin electron is
reduced. To discuss this point we assume orthonormal orbitals in (3.7). The band
narrowing is qualitatively obtained by averaging det($®)) in (3.7):

Edo(@) = (53 der(s™) @) 39

The band narrowing is therefore given by the first factor in (3.9), which is the average
overlap of the many-body wave function for the 1 -spinelectrons with this wave function
shifted by one lattice constant. This is similar to what Doucot and Rammal [37] derived
in the coherent-spin-state approximation and it is also akin to the hopping of polarons.

As in the Hartree-Fock approximation, the energy is invariant under any arbitrary
regular transformation of the occupied orbitals

Pp 2'2 @M.
Y

This feature is very useful for stabilizing the numerical algorithm to obtain the stationary
one-particle orbitals. To obtain an effective Hamiltonian for the T -spin electron
orbitals, we differentiate the energy with respect to ¢, (x;) and equate the result to zero.
We need not introduce Lagrangian parameters for the orthonormality constraint as in
[22], since (3.7) is valid for arbitrary orbitals. The derivation is outlined in section 2 of
the appendix and leads to the eigenvalue equation:

En(pr](xi) = IE gTir-A det(s(m) z ‘py(xi + A)S%)hl
4 ¥
F1Z gyx +4) ~t 2 gy x)SH
14

+ (6.0 2 0,e)03 ) 24(0). (3.10)

We have thus derived a self-consistent-field equation for the one-particle orbitals. As
described in section A2, a Lowdin orthogonalization was performed after differenti-
ation, and so orbitals finally appearing in (3.10) are orthogonal. The overlap matrices are
also understood to be evaluated in these orthonormal orbitals. If the true eigenvectors
of (3.10) are inserted, the effective Hamiltonian becomes Hermitian and the eigenvalues
for the occupied orbitals are all degenerate and identical to the kinetic energy of the | -
spin electron:

E, = E}, =12 ¢4 det(SW), (3.11)
A

This can be verified by multiplying (3.10) by @7 (x;} and summing over x,. As a2 matter
of fact, for any set of orthonormal orbitals used in the definition of the effective Ham-
iltonian, these very orbitals are the left-eigenvectors of the effective Hamiltonian. The
one-particle energies are all degenerate and given by expression (3.11). The first term
on the RHs of (3.11) acts only on the occupied orbitals and is the only term that correlates
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the orbitals of the { -spin electrons. The second and third terms describe a nearest-
neighbour hopping followed by aprojection into the subspace orthogonal to the occupied
orbitals:

Hos = (1= 2l X0l Hua (3.12)

Similarly, the fourth and fifth terms consist of a static scattering potential for the central
site, again followed by the projection operator into the space of non-occupied states.
The eigenvectors of the eigenvalue problem (3.10) without the first term would be the
eigenstates of a tight-binding model with nearest-neighbour hopping and an impurity at
X = 0.

A quantity that allows us to classify the low-lying states according to the single-
particle or spin wave character is the momentum distribution. The expectation value of
the spin-dependent momentum distribution function for the wave function y(g) of (3.2)
with orthonormal orbitals g, is derived in section A3 of the appendix:

Ny
ls -
nt@)= 2 1e.®F  ntl) =g et Indesy).  (3.13)
e=t !

The expression for the T -spin electrons is what one expects for uncorrelated electrons.
The momentum distribution for the | -spin electron involves the two-centre overlap
matrices (3.8) for all possible centres and it depends explicitly on the total momentum
¢q of the many-body wave function.

4. Some technical details

Here we briefly discuss some of the technical details, in as far as they are of general
interest or necessary for the understanding of the results. We used several techniques
to determine the one-particle orbitals @,(x;). The most obvious scheme for minimizing
the energy functional is presumably simulated annealing [28]. There are at first glance
several advantages: (i) if one has enough patience and computer time this algorithm will
find the global minimum; (ii) the algorithm is numerically stable; (iii) when changing
only one orbital at a time, the update technique for determinants [39] can be used. To
perform one lattice sweep (to change each variational parameter once) involves
O(NN3) operations. In the actual calculation it turned out that this scheme is still very
slow, mainly for two reasons: (a) the number of operations for one step is considerable
and the updated determinants become inaccurate very quickly and have to be recal-
culated from seratch at about every 100th step; {b) due to the random nature of the
changes it was necessary to make a huge number of lattice sweeps to reach the desired
accuracy. The problem is that the total energy is of order NV while the excitation energy
is only O(1}.

By making use of the gradient, implicitly given in (3.10), it is actually possible to
devise an algorithm that is superior in both respects. One can obtain a much faster
convergence as far as the number of lattice sweeps is concerned and the computational
costs per lattice sweep are reduced to O(NNE). The optimal algorithm among the
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possible standard minimization schemes for the present problem is the power method
{40]. Formally, (3.10) can be written as

"‘Cg‘pa’ =E.@, (41}

where the operator £ is non-local and depends on all occupied orbitals. Asforastandard
eigenvalue problem we define the iteration scheme

eyt =(£- EDg; 4.2)

with a proper spectral shift E; to ensure and speed up the convergence towards the ground
state. Starting from an arbitrary set of orthonormal orbitals the iteration procedure (4.2)
produces a new set of orbitals, which in general is no longer orthonormal. We can
orthonormalize the orbitals at each step, since the energy is invariant under this opera-
tion. Extensive numerical tests have shown that the power method yields precisely the
same ground state energies and orbitals as obtained by simulated annealing. It is worth
mentioning that the power method and steepest descent produce a very similar sequence
of energies, when starting from the same initial set of orbitals. The former is, however,
more economical per iteration step. Another standard technique, which in principle
should be superior to steepest descent, is the conjugate gradient method [41]. It turned
out, however, that this scheme has one crucial shortcoming, which in the end makes it
less efficient than the power method. Similarly to what happens in quantum Monte
Carlo algorithms for many-fermion problems, the one-particle orbitals entering the
determinant have the tendency to become more and more parallel during the iterations.
To keep the algorithm stable one has to reorthonormalize the orbitals after about five
iteration steps. Althoughthe energyisinvariant under this transformation, the conjugate
gradients are not, and the whole scheme loses its advantage. The Lanczos algorithm,
which for standard eigenvalue problems is equivalent to the conjugate gradient method,
cannot be applied to the non-linear eigenvalue problems (3.10). Most of the results
reported in this paper are obtained with the power method. Simulated annealing is
merely used from time to time as a check.

5. Results and discussion

In the first part of this chapter we concentrate on I/ = «. We begin the discussion of the
results with a comparison of the ground state energies obtained with the present ansatz
and by the Lanczos method [19], which is supposed to be exact. The biggest system
accessible to exact diagonalization is the 8 X 8 cluster with three holes. This is an open-
shell case and there exists no unique Nagaoka state, The wave vectors reported here are
therefore absolute and not measured relative to a reference state. The ground state
energies for this system for wave vectors along the (1, 1) direction are given in table 1.
We see that the data, obtained by the present ansatz, are in very good agreement with
the results of the Lanczos method. The excitation energies, also given in table 1, are
negative for periodic boundary conditions, which we used for all our calculations.
Barbieri et al [19] found that the sign of the excitation energies depends on the boundary
conditions. As mentioned earlier, the case of three holes is an open-shell situation and
several Nagaocka states with different total momenta K are possible. This is why the
excitationenergiesforg = (7, 7)andq = (37/4,3n/4) are degenerate inour calculation,
They both belong to zero-energy spin wave excitations. In the following discussion we
will concentrate on closed-shell situations, since they have two major advantages: (a)
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Table 1. Ground state energies for the 8 X 8 cluster with three holes. Wave vectors are given
in units of /4 and energies in units of |¢|. The exact (Lanczos) results are from [19]. The
values in brackets are the excitation enerpies.

q Lanczos Ansatz

(0,0 -10.942 -10.940 (—0.056)
(1,1 -10.91% —10.916 (—0.044)
(2,2) —10.875 —-10.874 (—0.023)
(3,3) -10.834 -10.828 (—0.000)
4.4) —10.750 -10.744 ( 0.000)

they are unique and have a fairly regular finite-size behaviour; (b} it is possible to follow
the dispersion relation of a single branch of excitation energies, because there is only
one Nagaoka state defining the origin in k-space. In figure 3 the low-lying dispersion for
a system of size 12 x 12 with 21 holes is given. This dispersion is typical for the case of
low hole concentration. We find qualitatively similar results for hole densities 6 < 0.15
for all systems studied. For small & the dispersion curves are very much like that for the
simple spin wave, which for comparison is also given in figure 3. They both start off =« g2
from the I" point. The results are shown along high-symmetry lines connecting the points
T'=(0,0),M = (x, 7)and X = (7, 0). The similarity between the simple spin wave and
the low-lying excitation of the Hubbard model is the greater the lower the hole con-
centration. The only important difference between the two results is an overall renor-
malization factor. The simple RPA spin wave results for the case in figure 3 are about
three times larger than our more accurate results. We conclude that the Jow-lying
excitations of the Hubbard model for small § and I/ = « are renormalized spin waves.
To obtain a more quantitative measure for the renormalization we analyse the spin wave
stiffness constant (2.13). We obtain D = E(g)/q? from a quadratic fit of the excitation
energies for the smallest g-values in the (1, 0) and (1, 1) directions for a given lattice
size. We collected data for 8 x 8, 12 x 12, 16 X 16 and 20 x 20 clusters for all possible
numbers of holes corresponding to closed-shell situations. We find a universal linear-
d-dependence of D for § <0.15: D = 0.069(5)dz|¢]. In particular, for §=0.1, D =
0.0069(5)z|¢| as compared with D = 0.009z[¢{ obtained by Shastry et af with the Gutz-
willer-projected rRPA wave function. Our result is smaller as a consequence of the better
trial wave function. The discrepancy becomes more pronounced for & = 0.2, where the
results are 0.0082(7)z|¢| and 0.014z|¢|, respectively. The spin wave stiffness constant of
the Hubbard model is therefore much smaller than the rRra value, which for small 8 is
DFPA = ().256 24|

D as a function of & is already deviating from linear behaviour at 6 = 0.15, and it
passes through a maximum with increasing 8. Eventually it becomes negative beyond
some concentration 6*. For lower hole concentration than this, the overall dispersion
curve already deviates qualitatively from the simple spin wave curve. It has regions of
negative excitation energies indicating instability of the strongly ferromagnetic state.
Figure 4 shows a typical dispersion curve slightly below the concentration 6*. For the
smaller clusters (up to 12 x 12) the instability occurs at the X point (g = (ir, 0)). This
point has, however, no deeper physical significance, contrary to the speculations in [18]
for the two-hole case. In our calculations it turns out that the X point is part of, or close
to, the Fermi surface for these system sizes and for the concentration where the excitation
energy becomes negative (8., = 0.3). In fact, the minimum of the excitation energy
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Figured, Low-lying excitations of the 20 Hubbard model for the 12 x 12 cluster with 57 holes
(& = 0.40).

occurs at k. This can either be verified for a small cluster at higher hole concentration
(figure 5) or for a bigger cluster. In the latter case (figure 6) we also see that the spin
wave stiffness constant is still positive, while the ferromagnetic state is already unstable
due to the single-particle excitation at k.

Next we study the d-dependence of the dispersion curve. In figure 7 the excitation
energy for ¢ = (7, 0) is depicted for various cluster sizes. We find a rather universal
behaviour for all system sizes: a linear increase for small 6 and a transition to negative
values at & = 0.29. It has been argued in [25] that the stability of the ferromagnetic phase
at small & is due to the 6%-dependence of the kinetic energy of the | -spin electron. This
particular 8%-dependence is, however, an artifact of the Gutzwiller wave function and
is not a generic argument for the stability of the ferromagneticstate. This is not surprising
as the result for I/ = = is obtained by merely projecting out double occupancies from the
U = 0 solution. The wave function implicitly used by Roth already shows a linear &-
dependence of E£},. We obtain for the (20 x 20) cluster with é < 0.1 the following

ENERGY / [f]

0B} ,m

WAVE VECTOR

Figure 5. Low-lying excitations of the 20 Hubbard model for the 12 % 12 cluster with 83 holes
{6 = 0.58).
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Figure 6. Energy dispersion of the 2p Hubbard model for the 16 X 16 cluster with 69 holes
(8 =0.27).

dependence:
Edin = z|f(0.78 +3.78%) + E, Ely =—2jt(0.26 +4.06%).  (5.1)

Since E ), corresponds to the bottom of the | -spin electron the band width is twice the
value of the kinetic energy. The kinetic energy for the | -spin electron for arbitrary kis
to a good approximation given by E4, (k) = ¢ &(k), as givenin (3.9), and the narrowing
factor ¢ for small 8 would be, according to (5.1), g = 0.26 + 4.08%. At this point it is
interesting to compare this with the result of the dominant term approximation discussed
by Vollhardt [24]. This approximation has been employed by Rice and Ueda [42] for the
periodic Anderson model within the framework of the heavy-fermion problem. The
exact result for the energy of the Gutzwiller wave function for one reversed spin yields,
according to (2.8), g, = 76 The dominant term approximation leads to [24] g | = 6in
the thermodynamic limit. The exact evaluation of the Gutzwiller ansatz yields therefore

0.5 T T —
~ 0.0
o
o
]
z _0-5 o of
l

_1 '0 i L Il i
0.0 0.2 0.4 0.6

HOLE CONCENTRATION

Figure 7. Excitation energy for 4 = (i, 0) as a function of the hole concentration (closed
shells only) and for various [attice sizes: § X 8(<), 12 X 12(@), 16 X 16(k)and 20 x 20 (+).
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the wrong é-dependence for g | . The dominant-term approximation gives the right &-
dependence, but with a prefactor that is one order of magnitude too big. This has an
important impact on the question of ferromagnetism in the heavy-fermion problem.

We now consider what conclusions can be drawn from our results about the stability
of the strongly ferromagnetic state in the thermodynamic limit N — =, The discussion
above, for example that of figure 6, indicates that this state first becomes unstable via
single-particle excitation in which an electron is removed from the T -spin Fermi surface
and placed in a state with & = @ at the bottom of the | -spin quasi-particle band. The
question iswhether this excitation energy is positive or not, for a given hole concentration
&. For closed-shell situations the wave vector g of the excited state, relative to the unique
Nagaoka state, is equal to a Fermi wave vector but for the range of 4 of interest a close
upper bound for the excitation energy is obtained with ¢ = (7, 0). Thisexcitation energy
is pliotted in figure 7 as a function of & for different system sizes, The small scatter,
particularly at small &, suggests that these results are close to the thermodynamic limit
and that there are no negative excitation energies for § <0.29, It is interesting to
compare figure 7 with figure 2, where the peaks in the data correspond to closed-shell
results within Roth’s approximation. In the latter case there is marked downward shift
of the peaksfrom the § % §tothe 16 x 16 cluster as the thermodynamic limit (essentially
the curve for the 100 x 100 cluster) is approached. The absence of such an effect in
figure 7 further supports the suggestion that the results in that figure are close to the
thermodynamic limit.

In figure 8 we plotted the lowest excitation energy for any wave vector and for all
numbers of holes in an 8 X 8 lattice. We obtain negative excitation energies even for
8 < 0.29. In cases where the lowest excitation energy is zero, corresponding to the trivial
state of zero-wave-vector spin wave, the result plotted is for ¢ equal to 2 Fermi wave
vector, to aid comparison with figure 2. There is an overall similarity between figures 2
and 8 but in the latter case the fluctuations between closed and open shells are reduced
by a factor 2. If in the thermodynamic limit there are no negative excitation energies for
0 < 0.29 we expect the negative values in this range in figure 8 to tend to zeroas N —»
with increasing system size. To illustrate this tendency, figure 8 also contains results for
the 16 X 16 cluster for a few typical hole concentrations, which exhibit the largest
fluctuations. To sum up, we can conclude rigorously from figure 7 that the strongly
ferromagnetic state is unstable for & > 0.29 and that it is very probably stable for 8 < &,
where 8., is somewhat smaller than 0.29 but non-zero.

We close the discussion about the infinjte-U limit with the results for the momentum
distribution function. Tables 2 and 3 show the values of n(%) for 4 = 0.08 and & = 0.33,
respectively. Both results are for the X point in k-space. For the 1 -spin electrons the
difference An' (k) = n' (k) — ny(k) from the Nagaoka state is given. In the first case of
low density (table 2) we observe that An1(k) is uniformly distributed proportionally to
n®k). This is precisely the result we obtained for the simple spin wave ansatz. The same
is true for the momentum distribution for the | -spin electron. We see in table 2(b) that
n'(k) = n®k — q). These findings confirm our conclusions, based on the dispersion
curves, that the low-lying excitations of the Hubbard model for low hole concentrations
(& =< 0.15) are spin waves. Also, in agreement with our earlier results, the momentum
distribution for 6 = 0.33 given in table 3 resembles very much that of a single-particle
excitation. n 1 (k) is strongly reduced in a localized region near k = (7, 0) and 2 * (k) has
aclear structure near k = (0, 0). The momentum distribution for infinite U givenin table
3 resembles much more closely the ideal case of a single-particle excitation (U = 0) than
that of the Gutzwiller ansatz sketched in figure 1. However, the rather uniform An ' (k)
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Table 2. Values for the momentum distribution in units of 0.01 for the & x 8 cluster with five
holes (& = 0.08) for the state with momentum g = (0, x). (2) For the 1 -spin electrons; the
difference An' (k) = n' (k) — n°(k). (b) For the | -spin electron. The &, and k, coordinates,
in units of /4, are indicated at the bottom and left, respectively, of each part of the table.

(a)

4 1 -3 -2 -2 -2 -3 i 1
3 -3 -2 -2 -2 -2 -2 -3 2
2 -2 -2 -2 -2 -2 -2 -2 -2
1 -2 -2 -2 -2 -2 -2 -2 -2
0 -2 -2 -2 -2 -2 =2 -2 -2
-1 -2 -2 -2 -2 -2 -2 -2 -2
-2 -2 -2 -2 -2 -2 -2 -2 -2
-3 -3 -2 -2 -2 -2 -2 -3 2
-3 -2 -1 0 1 2 3 4

(b)
4 1 2 2 2 2 2 1 1
3 2 2 2 2 2 2 2 1
2 pA 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 0
0 0 2 2 2 2 2 0 0
-1 2 A 2 2 2 2 2 0
-2 2 2 2 2 2 2 2 2
=3 1 2 2 2 2 2 1 1
-3 -2 -1 0 1 2 3 4

over much of the zone, which is spin-wave-like, indicates that the | -spin quasi-particle
has a strong ( § -spin particle + magnon) component as in the wave function {2.9). The
physical picture is therefore as obtained by diagrammatic approaches [26-29]. For small
hole concentration the single-particle excitations are much higher in energy than the
Goldstone mode (spin waves), which have a g2-behaviour at the I point. The spin wave
stiffness constant is, however, strongly reduced by correlation effects as compared with
the simple spin wave or RPa result. With increasing hole density the gainin kinetic energy
of the | -spin electron overcomes the loss in kinetic energy of the 1 -spin electrons and
the energy for a spin-flip lies below the Fermi energy of the T -spin electrons. Above
the critical hole concentration, the ferromagnetic state is unstable.

We conclude for {J = o that the strongly ferromagnetic state is the ground state for
8 < 85. On the other hand for U = 0 the ground state of the Hubbard model is non-
magnetic. There exists therefore a critical on-site repulsion U*(8), below which the
ferromagnetic state becomes unstble. As expected from strong-coupling perturbation
theory, we find that the ground state energy behaves as follows: E(U) = E(») — a/U
(a > 0). This illustrates the gain in energy due to short-range antiferromagnetic order.
For the system sizes and hole concentrations under consideration « is of the order of
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Table 3. Values for the momentum distribution in units of 0.01 for the 8 x 8 cluster with 21
holes (& = ¢.33) for the state with momentum g = (0, 7). () For the 1 -spin electron; the
difference AnT(k) = n' (k) — r%k) is given. (b} For the | -spin electron.

(a)
4 1 2 =2 =2 =2 2 -] 0
3 1 4 -2 -2 -2 4 — 1 0
2 2 -2 -2 -2 -2 -2 2 1
1 -4 -2 -2 -2 -2 ~2 - =4 =21
0 -4 -2 -2 -2 -2 . -2 . -4 -9
-1 -4 -2 -2 -2 -2 -2 -4 =21
-2 2 -2 -2 =2 -2 .2 2 1
-3 1 4 -2 =2 -2 4 1 0
-3 -2 -1 0 1 2 3 4
(b)
4 1 1 1 1 1 i 1 1
3 1 1 1 I i 1 1 1
2 ¢ 1 2 2 2 1 0 0
1 0 1 3 3 3 1 0 0
¢ 0 1 10 6 10 1 0 0
-1 ¢ 1 3 3 3 1 0 Q
-2 1 1 2 2 2 1 0 0
-3 i 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 4
0.5 T T T T
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Figure 8. Excitation‘energy atk = kp(seetext) for Figure 9. Phase diagram of the Hubbard model as
8 x §(+)andali possible numbersofholes1,. . ., functionof 6 and W/ U, where Wisthe band width,

32 and for 16 X 16 (@) at a few important hole
concentrations. The latter points occur in pairs,
the upper one corresponding to a closed shell and
the lower one to the closed shell minus one hole.
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10]#]. Assuming a constant @ for small hole concentration—which is in very good
agreement with numerical results—together with E() = v§ (equation (5.1)) we con-
clude that the phase boundary in the (S, W/U) phase space is linear in & as first predicted
by Nagaoka [14]. In figure 9 the phase diagram obtained for the (8 X 8) cluster is given.
The strongly ferromagnetic state is unstable for all densities if U < 42|¢|. These results
are in qualitative agreement with those of {43], where a variational method was used
exploiting a modified Gutzwiller wave function as proposed in [44]. Using a perturbative
treatment, the authors of [44] found that no ferromagnetic phase exists for U/W < 2,
which is the region for which the scheme yields reliable results.

A strong U is thus necessary to stabilize the ferromagnetic state. The critical U* that
we find is, however, significantly smaller than that obtained by recent slave-boson mean-
field calculations [3]. We observe the following behaviour of the low-lying excitations
on reducing L/: the bottom of the single-particle continuum comes down in epnergy and
pushes down the spin wave branch; the latter eventually becomes negative first at kg;
for small &/ the minimum near &g is much more pronounced than has been found in the
case of infinite U.

6. Summary

We have studied the low-lying states of the two-dimensional Hubbard model with one
| -spin electron and an arbitrary number of 1 -spin electrons as a function of the on-site
repulsion U and the hole density 8. The analysis has been done in the framework of a
wave function, which was proposed by one of the authors [22]. It is known that the
ansatz is exact in 1D. The underlying physical idea, however, is not restricted to 1D and
comparison of numerical results with exact data for small clusters shows that the ansatz
is very accurate in 2D as well. We have studied systems of size 8 X 8, 12 X 12, 16 X 16
and 20 x 20 for all possible hole concentrations. To see whether the ground state is ever
ferromagnetic, we investigated the infinite-U case in great detail. It has been possible
to follow a single branch of the spectrum throughout the entire Brillouin zone, by
considering only closed-shell systems. For open-shell situations this is very difficult, as
the non-interacting ground state is degenerate and several reference (Nagaoka) states
are possible. The degeneracy of the Nagaoka state leads to a superposition of low-lying
bands, each starting at a different point in the Brillouin zone. This is precisely what one
expects in the thermodynamic limit. For N — % the Fermi volume can be rearranged
slightly, which involves only energy changes of order 1/N, to construct Nagaoka states
with arbitrary total momentum K. Each of these states can serve as the origin of a
dispersion curve similar to the one we obtained for the closed-shell situations. Conse-
quently, the bottom of the low-lying excitation spectrum should be dispersionless in the
thermodynamic limit. However we have interpreted the dispersion curves of figures 3—
6 for finite N in terms of spin wave and single-particle excitations from a particular
Nagaoka state and discussion of figures 7, 8 and 2 indicates that corresponding excitation
energies are close to their values in the thermodynamic limit. From the dispersion curves
and the spin-dependent momentum distribution it follows that for small hole density
6 <0.15 the low-lying excitations are spin waves with a strongly reduced spin wave
stiffness constant D. We find that D is about four times smaller than obiained in the RPA.
For larger hole concentration the spectrum near kg takes on a single-particle character
and becomes soft at kr. The energy becomes negative at a critical concentration d, =
0.29. The critical hole concentration is considerably lower than that obtained earlier
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using simpler variational wave functions. We conclude therefore that the 20 Hubbard
model has a small region in the (6, W/U) phase diagram where the strongly ferro-
magnetic state is the ground state, We find, however, that the generic argument for the
stability of the ferromagnetic state, claimed by Shastry et al, is not valid. In this paper
we have concentrated on the instability against a single spin flip. As discussed, the
instability of the strongly ferromagnetic state indicates that the quasi-particle energies
for the | -spin electrons dips below the Fermi energy of the { -spin electrons. This
indicates, as found in exact diagonalization of very small clusters, that the energy can be
lowered even further by flipping more than one spin. Whether the transition is directly
to a non-magnetic state, as found in Hartree-Fock calculations by Oles [43], is not yet
clear. Our results have, moreover, shown that the diagrammatic approaches proposed
earlier {26-30], which implicitly used Roth’s wave function, are rather accurate. These
schemes have the advantage that they can be applied to an arbitrary number of | -spin
electrons. We reckon that they should yield a fairly accurate basis for further studies of
the Hubbard model.
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Appendix

Al. Kinetic energy

Here we derive the expression for the kinetic energy. To this end we define new
operators:

b =2 @u(x; ~ x))ajy (A1)
and rewrite the wave ffunction:

) = 7 2 evval, Tl o', (42)
The norm of the wave function is readily written down:

oo =52 o (TT o) (LT o4") 0 (43
By means of Wick’s theorem we obtain

o {T16%)(IT6¢" ) 10 = cets) (a0
with ) )

Sep = OIO6P'I0) = 2 02 (el +5,-5) (A5)

For the norm we need only the result fori = j:

(lx) = det(S) (A6)
where S is the overlap matrix §0,
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The expectation value for the kinetic energy of the | -spin electron is obtained in a
similar way:

Gl bl 210 = - 2 efe %) det(S41)/det(S)
‘D (A?)
=12, e704 det(S™1SA0)
A

where like in (A4) Wick’s theorem has been employed.
The expectation value for the T -spin electrons is somewhat more complicated:

GlH 0 =~ S 2 (0] (H b9 alra (H o' ) [0 (A8)

N(r;) !

We evaluate first the expression for the summand in a slightly generalized form, with
different centres !, I', as we will need it for the momentum distribution functions as well:

ol (TTe0) atyar (168" )10= 5,01 (TT6) (IT59" ) 10
- (0] (1} bg?) apal; (1;[ bgp*) |0). (A9)

According to (A4) the first term on the RHS is, apart from the Kronecker 8,

o (169 )(TL59") 10 = dex(s), (A10)
& o
To evaluate the second term on the rHS of (A9) we introduce auxiliary orbitals:
b = ajy b =a;;. (A11)
Again invoking Wick’s theorem, we obtain ’
O (TT60) arrals (IT6¢") 100 = dexc) (A12)
The matrix M4 is identical to S D fore,B=1,....N 1, but it contains one additional

column and row with index 0:
o =0[6§bP [0y =8,;  Mop = (QIb{ 6|0} = @plx; —x1)

=069 |0) = @ (x; —xp).
(A13)
On adding to the Oth column of M a proper linear combination of the other columns,
which leaves the determinant unchanged, one can make all elements of this column
vanish, except the (0, 0) element. The determinant we seek is therefore
My
det(M) det(S[’ f)) (1 - 2 (p,(x —x;)S“ D™ lqo;(xj—xp)). (A14)
w =t
The expression in brackets is the Oth element of the transformed Oth column. Collecting
(A14), (A12), (A10), (A9) and (A8) we obtain

ol (16 aly a1 (II bw*) 0

= get(s ™) ( 3 pter-m)sty” 'o3—x))- (A15)

a,f=1
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For the kineticenergy we onlyneed! = {’. The first factor onthe RHS of (A 15)is therefore
the norm of the wave function. Inserting (A15) into the kinetic energy expression (AS8)
and dividing by the norm leads to

Gl H Sl el = zZ Sz 2 54, (A16)

af tin

A2. Eigenvalue equation for non-orthonormal orbitals

To generate the energy expression in non-orthonormal orbitals

E=12tr(S718%) + 1 2, det(§~18%) e~ird
A a

+ uEﬂ Szl 0y 4(0) (A7)

with respect to @ 7 {#) we will make use of the following results:

g B
" SE,,A =6a -\-',‘+A af
Gor() o T Om®slxi tA) g Sy =

det(S3) = det(S@) 2 @, (x, + A)S®,
Y

~ ;1 E @, (x)S5
(A18)

d
35 (i)
We perform the following tedious but straightforward steps:

(i) differentiate (A17) by using (A18) and equate the result to zero;
(ii) multiply both sides with $,12 and sum over n;
(iii) perform a Lowdin transformation t¢ orthonormal orbitals:

Pa= 2 @Szl (A19)
]
and we end up with the eigenvalue equation for the orthonormal orbitals ¢ ,:

E,¢,(x;)= 12 emivd det(ém}fpv(xi + A)SW-'
Ay
-+ tz @olx, +A) - ;2 ¢y(-"s)§§$,’

+ (840 E @, E)F5 ) 9,00) (a20)

The overlap matrices § are evaluated with the orthonormal orbitals.
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A3. Momentum distribution

In this section we assume orthonormal one particle orbitals @,. The overlap matrix S is
therefore the unit matrix and the norm (x|x} = 1. By making use of the operators b', b
of section Al of this appendix, the momentum distribution for the 7 -spin electrons is:

Gelnay ) = 2 2 expk - 1= ) S 01 (T169 ) alsar (I06") 0. (a21)

Together with (A17) for orthonormal orbitals we obtain

1 . 2
iner 10 = S| Ze*p,0| = Zlpawr (a2)

with @ ,(k) being the Fourier transform of ¢ _(x), as is obvious from (A22). For the | -
spin electron

1 .
ey 1= 5z explitk = a)- Gy —x)00l (I8 ) (T 69" ) 100 (A2)
if a @
Along with (A12) we finally obtain the desired expression:

1o .
Gy 1y = 55 20 X051 dey(S10). (A24)
!
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